
Dynamic Rights Reallocation in Social Networks

Adnan Ahmad
1
, Brian Whitworth

1
and Lech Janczewski

2

1
Massey University, Auckland, New Zealand

{A.Ahmad, B.Whitworth}@massey.ac.nz

2
The University of Auckland, Auckland, New Zealand

Lech@auckland.ac.nz

Abstract

Access control, as part of every software system, has evolved as computing has evolved. Its

original aim was to limit unauthorized access to centralized systems, but the rise of social

networks like Facebook has changed that. Now each person wants to control who sees photos

or makes comments on their local wall by making and unmaking friends, i.e. dynamic,

distributed rights control. Social networks already have access control, but there is currently

no agreed logical model for their rights, no consistent scheme for allocating and re-allocating

permissions to create, edit, delete and view social objects and entities. A socio-technical

approach based on social and technical requirements can give the basics of a model. Various

rights reallocations like multiply, divide, transfer and delegate are explored. It suggests a

theoretical base for access control beyond its security parent.

Keywords

Social Networks, Rights analysis, Rights reallocation

1. Introduction

The need for access control arose with multi-user computing, as users sharing the

same system came into conflict (Karp et al. 2009). As computing evolved, access

control logic developed to offer domain access control for distributed systems and

roles for systems with many users. With variations, the traditional access control

approach has worked for military and commercial applications, organizational

structures, contextual decisions, distributed applications, medical data, peer-to-peer

networks and the grid environment (Lampson, 1969; TCSEC, 1985; Clark and

Wilson, 1987; Ferraiolo and Kuhn, 1992).

The last decade has seen extreme multi-user systems emerge – social networks (SNs)

where millions of users share billions of resources and grant each other access rights

(Carminati et al. 2008). As access control now depends on the number of

interactions, its complexity increases geometrically with size, not linearly. Mapping

millions of subjects directly to billions of resources is unwise, as each account adds

hundreds or thousands of photos and comments a year. The world population is at

seven billion and growing, if Facebook's current 800 million active accounts is just

the beginning, traditional access methods may be ending their useful life.

As social networks are here to stay, and growing in number and size, a logical model

of distributed rights reallocation is needed. This includes rights multiplication,

division, transfer and delegation. The aim is to identify software patterns that

embody social principles as well as technical principles like efficiency (Ahmad and

Whitworth, 2011). The result would be a consistent scheme to allocate and reallocate

distributed rights in a socially acceptable way. The rest of the paper is organized as

follows: Section 2 reviews previous work, Section 3 gives the specifications, Section

4 presents the model, and Section 5 concludes it.

2. Review

Carminati et al. presented a semi-decentralized access control model for social

networks (Carminati et al. 2008), where users are categorized in terms of relationship

type, depth and trust level. Likewise dRBAC manages trust in coalition

environments by decentralized access control (Freudenthal et al. 2002). Additionally,

some other access control solutions use trust (Ali et al. 2007), reputation (Carminati

et al. 2006) and relationships (Tapiador et al. 2011) to manage access rights between

users. However, there is no access control model for SN that supports rights

reallocation.

There are delegation models for traditional access control, but other types of right

reallocation, like multiplying and dividing, have received little attention. Existing

delegation models can be categorized into machine to machine – one object acting on

other’s behalf (Varadharajan et al. 1991), user to machine – objects acting on user

behalf (Gasser and McDermott, 1990), and user to user role delegation – user

assigning roles to other users (Barka and Sandhu, 2000).

Traditional models cannot be mapped to current SN for the following reasons:

1. Traditional solutions do not give local control over user contributions like

family photos, and so struggle with privacy demands. Central access control

gives each user the same policy, so variants must be requested from a

central authority who sets system wide roles. The user has no local control

over their resources as friends are based on generic roles.

2. The delegation models presented in literature are based on system wide

entities and are hard to apply on SN local autonomous domains, where

domain based delegation is required rather than role based. Current models

provide single user, multi-level delegation, but SN require multiple user,

single level delegations to maintain domain accountability.

3. Current access control models for SN do not specify the dynamic

reallocation of distributed rights found in social networks (Carminati et al.

2008; Simpson, 2008), where everyone can give rights away. In dynamic,

distributed control, each person can fully administer their own domain.

The above expands on previous work aimed at developing a general and logical

rights framework for online social interactions (Ahmad and Whitworth, 2011;

Whitworth, deMoor and Liu, 2006; Whitworth and deMoor, 2003). It addresses

rights reallocation because in social networks friends are regularly made and

unmade, i.e. managing rights allocations is a critical success criterion.

3. Specifications

A socio-technical system is a social system on a technical base, as a socio-physical

system is a social system on a physical base. Socio-technical design involves

technical and social requirements, to model not just what can be done but what

should be done.

3.1. Overview

An information system has entities and operations, where:

1. Entity. Stored as static information, with properties.

a. Actor. An entity that can participate in a social interaction.

i. Persona. Represents an accountable offline person or group.

ii. Group. A set of personae acting as one.

iii. Agent. An actor that represents another actor.

b. Object. Conveys information and meaning.

i. Item. A simple object with no dependents, e.g. a bulletin board

post.

ii. Space. A complex object with dependents, e.g. a bulletin board.

c. Right. A system permission for an actor to operate on an entity.

i. Simple rights. Rights to act on object or actor entities.

ii. Meta-rights. Rights to act on right entities, e.g. transfer.

iii. Role. A variable right (a set of rights).

2. Operations. Stored as a program or method that processes entities.

a. Null operations don't change the target entity, e.g. view, enter.

b. Use operations change the target in some way, e.g. edit, create.

c. Communication operations transfer data from sender(s) to receiver(s),

e.g. send.

d. Social operations change a right or role, e.g. delegate.

3.2. Reallocating Rights

The ability to reallocate social rights is the key to meeting social requirements. It

allows socio-technical systems to evolve from an initial state of one administrator

with all rights to a community with delegated rights. Re-allocation can change the

actors in a right or role as follows:

1. Transfer. Allocate use and meta-rights and is irrevocable.

2. Delegate. Allocate use rights only and is revocable.

3. Divide. Allocate rights jointly to an actor set.

4. Multiply. Allocate rights severally to an actor set.

If a right is owned jointly, all must agree to allow the act, while if it is owned

severally, any party alone can activate it. The above can act in combination, e.g. to

transfer joint ownership. Table 1 shows the details, as follows:

1. Transfer. Transfer gives all entity rights, including meta-rights (Gaaloul et

al. 2010). Rights are irrevocably given to the new owner, e.g. after selling a

house, the old owner has no rights to it.

2. Delegate. Delegate gives use rights but not meta-rights, so can be taken

back, e.g. a system administrator who delegates rights can take back the top

system priority (Gaaloul et al. 2010).

3. Divide. Those who divide ownership jointly own an entity, e.g. a couple

who jointly own a house must both agree to sell it. In joint ownership, any

party can stop an act.

4. Multiply. In multiply, the entire right is given completely, so any party can

act alone as if they owned it exclusively, e.g. a couple's bank account where

both can withdraw all the money.

 Allocated by (Actor) Allocated to (Actor)

 Meta

rights

Use

rights

Meta

rights

Use

rights Transfer √√√√ √√√√
Delegate √√√√ √√√√
Divide

use
√√√√ ½√√√√ ½√√√√

Divide all ½√√√√ ½√√√√ ½√√√√ ½√√√√
Multiply

use
√√√√ √√√√ √√√√

Multiply

all
√√√√ √√√√ √√√√ √√√√

Table 1: Allocating use and meta-rights

For example, a many author paper submitted online can let one author alone edit it

(transfer), let one author edit as allowed by the primary author (delegate), let edits

proceed only if confirmed by all authors (divide), or let any author do any edit

(multiply). The model covers all these social options.

If a delegatee gets no meta-rights, they can't pass rights on, e.g. renting an apartment

gives no right to sublet. Similarly, lending a book to another doesn't give them the

right to on-lend it, though as with all social requirements, it happens. Yet being

consistent maintains accountability, e.g. if one loans a book to a person who loans it

to another person who then loses it, who is accountable to the original owner? This

gives the operational principle:

P1. Delegating doesn't give the right to delegate.

A right reallocation is revocable if the initiating party keeps the meta-rights, so

delegation is revocable but transfer is not. Dividing use rights is revocable but

dividing all rights is not, as reverting would require joint agreement. Multiplying use

rights is revocable but multiplying meta-rights is a dictator's dream case as anyone

can allocate all rights to anyone, which is likely unstable.

To allocate a right to an existing object makes one accountable for it, so by fairness

requires consent, e.g. one doesn't add a paper co-author without their agreement. The

principle is:

P2. Allocating use rights to existing objects requires consent.

One can't make someone the owner of something unless they agree. The access

control system would have to put a question like: "Martin wants to transfer edit

rights over xyz to you, do you agree?" In contrast, rights with no accountability for

existing objects can be allocated without permission, as the other can use them if

they wish, e.g. view and enter. The principle is:

P3. Rights that imply no existing objects or null acts can be allocated freely.

So space owners can delegate entry and view rights without inconsistency. These are

social requirements not technical necessities. As technical requirements express

technical good practice, so social requirements express social good practice. For best

effect, they should be applied consistently.

3.3. Social networks

The model both clarifies how social networks operate and suggests alternatives, e.g.

social networks send messages like:

"X wants to be friend with you"

In this model, it is a social trade: X will add you to their friend role if you add them

to yours. It can be handled as a two-step social transaction, but the steps need not be

linked. A tit-for-tat is assumed, but one can befriend another, i.e. add them to a friend

role, without their permission (P3). One could make another a friend, with view

rights, whether they return the favor or not. So, one could receive messages like:

"X has made you a friend "

This is an offer to be a friend, not a request to be my friend. As one can love another

who doesn't return the favor, so friendship needn't be mutual. Systems that

axiomatize friendship as always a duality limit it, as friendship is given as well as

received.

4. The formal model

An access control matrix can be expressed using function Grant-Right (A, O, R)

which holds whenever the access control matrix gives right R to actor A over object

O. So function of the form

Grant-Right (Alice, abc.txt, View)… (i)

states that Alice can view the abc.txt file. This kind of simple function can also be

used to assign various rights to roles instead of individual actors, e.g. the function to

give edit right to family role over abc.txt will look like

Grant-Right (Family, abc.txt, Edit)… (ii)

Also, some rights can contain others as their subset, e.g. allocating an edit right

implies a view right to the same actor:

Grant-Right (A, O, Edit) ╠ Grant-Right (A, O, View)… (iii)

Apart from the basic Grant-Right function, which is a nice way to represent the

rights stored in the access control matrix, access control logics also include formulae

of the form A says Ω, where A is an actor and Ω is a right statement (Genovese et al.

2010). The formula represents that actor A makes statement Ω, which can be a

request, assignment of rights to some actor or role, or as a part of the security policy,

e.g. the owner of an object grants a friend the right to view it, this assertion can be

represented as:

Owner says Grant-Right (Friend, Object, View)… (iv)

The precondition of using this say function is that the authorizing actor holds the

meta-right to the right that is given away. In the above statement, the owner is by

definition the person with meta-rights to that object, so can re-allocate its rights.

In a typical SN instance, suppose Alice sets David as family, George

as a friend and Bob as a colleague, where David has a friend Harry and George has a

friend Frank. If Alice posts a photo collage of her family on her wall (space) as entity

O1, she may wish to let David view and edit (add a photo to it), George to view it,

but to not let Bob see it at all. This can then be done by granting those rights to those

roles. Yet David might post his family photos O2 on his wall but not to let his friends

view it, as his domain has different rules from Alice. This can be modelled in a

consistent way, as shown in Table 2.

This model lets Alice delegate or transfer view rights to her family photo. If she

delegates view to her friend George, he can't show it to his friend Frank (by P1), but

if she transfers view to David, then David can show it to Harry. So delegate means

you can't pass it on.

If Alice delegates edit rights to David, only he can add photos. If she multiplies edit

rights to him, both her and David can add photos. If she divides the rights, photos

can only be added if they both approve. If Alice transfers edits rights to David, he

can on-delegate, to let his friend Harry add a photo.

Alice can delegate, divide or multiply delete rights, but to transfer them would be to

give up ownership of her space, e.g. another could post a picture she disapproves of

which she could not delete. If the right to delete, or at least to say who can delete, is

basic to the ownership of any local domain space, it can't be given away without

giving away the space.

This access control model not only supports existing rights, as granted by systems

like Facebook, but also suggests new ones, e.g. to let SN actors set their role

allocations different from the general template, or create new local roles like

colleague. Local domain control involves decentralizing meta-rights, not just rights.

The proposed framework can handle this because it doesn't distinguish the

administrative authority. The condition formula A says Ω can be used by many as

well as by one, as both A and Ω are arbitrary. In this approach:

Access Control Model Instance
*

Subject (type : subject, identifier : number, name : string) User (subject, number, user)

Right (type : right, identifier : number, name : string) Role (subject, number, role)

Object (type : object, identifier : number, name : string)

User (subject U, #1, Alice) User (subject U, #2, Bob)

User (subject U, #3, David) User (subject U, #4, George)

Object (object O, #5, O1)

Right (right R, #6, View) Right (right R, #7, Edit)

UserRoles (subject UR, #8, Family) UserRoles (subject UR, #9, Friend)

UserRoles (subject UR, #10, Colleague)

ActiveRole (subject AR, ar#11, U : #3 (David), R: #8 (Family))

ActiveRole (subject AR, ar#12, U : #4 (George), R: #9 (Friend))

ActiveRole (subject AR, ar#13, U : #2 (Bob), R: #10 (Colleague))

Auth (S : ar#11 (Family), O : #5(O1), R : #6 (view), ϒ: +) subject (U, #3, David)

Auth (S : ar#11 (Family), O : #5(O1), R : #7 (edit), ϒ: +) subject (U, #3, David)

Auth (S : ar#12 (Friend), O : #5(O1), R : #6 (view), ϒ: +) subject (U, #4, George)

Authorization Set

(ar11, O1, View) (UR: #8, O : #5, R: #6, ϒ:+) (ar11, O1, Edit) (UR: #8, O : #5, R: #7, ϒ:+)

(ar12, O1, View) (UR: #9, O : #5, R: #6, ϒ:+)

(David, O1, View) (U: #3, O : #5, R: #6, ϒ:+) (David, O1, Edit) (U: #3, O : #5, R: #7, ϒ:+)

(George, O1, Edit) (U: #4, O : #5, R: #6, ϒ:+)

*Owner has all the rights over the object so owner role is not considered

Table 2: Access control model instance and its authorization set

1. Transferring changes the actor property of all rights to an object, including

meta-rights. It changes the owner, as formalized by

OldOwner says Grant-Right (NewOwner, Entity, AllRights) … (v)

By this access matrix change, the NewOwner has all rights to the object and

the OldOwner has none. The says method is the means by which that

occurs. As it is one atomic operation, the rights of the OldOwner and the

NewOwner cannot conflict.

2. Delegating a right reallocates all rights except the meta-rights. Again, the

says operation changes object rights from the delagator to the delegatee in

one atomic step, so at each point it is clear who is responsible for acting

upon it. In this case, the delegatee is responsible for the object, but the

delagator is responsible for the delegatee, and can revoke their permission at

any time.

3. Multiplying a right replaces its actor by an OR set, where the formula A ∨ B

says Ω to mean that principal A or B says Ω. This explicitly lets any actor

execute the given operation on the defined object alone.

4. Dividing a right replaces the actor by an AND set, where the formula A ∧ B

says Ω to mean that principal A and B jointly says Ω. This would require

the consent of both A and B to execute a function Ω, where Ω can be any

arbitrary operation legal in the settings of access control model instance.

Note that to automatically make the friends of my friends also my friends is to not

recognize the difference between delegate and transfer rights re-allocations. It

contradicts P1, that giving a use right doesn't give the meta-right. The attempt to

make friends of friends also friends illustrates a technical option that failed because it

had no social basis. Designing social interactions without regard to social

requirements is how we got the current spam problem (Whitworth and Liu, 2009). It

is a social fact that liking someone doesn't guarantee that one will like their friends.

In the above, if a role delegates a right, it can't be passed on.

5. Conclusions

This paper suggests how to allocate and reallocate access control rights to satisfy

social requirements like local ownership. It arises because those who add photos of

their family won't add them if they can't control them. The semantics of this model

satisfies social requirements P 1-3 and its formal syntax is consistent (Table 2). It not

only defines what SNs like Facebook currently do, and what they should not, but

also suggests new options not yet tried (Table 1).

Access control began in the shadow of security but socio-technology will make it a

new discipline. While security needs secrecy for obvious reasons, access control

today is more about access than control. It is about getting participation rather than

stopping it, as a socio-technical system without an active community isn't a socio-

technical system at all.

The next phase of this project is to develop a distributed, dynamic access control

plug-in for a NSF granted open knowledge exchange (OKE) system and evaluate it

with respect to both social criteria like fairness and technical criteria like storage

efficiency. This "rights module" will also give human readable reports to actors of

granted rights, i.e. be transparent. The goal is that social rights are not only applied

but also seen to be applied, as this is critical for trust and synergy.

Online communities today can't survive without participation, so access control is

increasingly about letting people in rather than keeping them out. This model follows

the socio-technical paradigm: to first define the social requirements then design a

technical solution to meet them. It tries to avoid social errors like the unfairness of

spam but still addresses technical requirements like consistency and efficiency. The

evolution of access control to include social requirements goes beyond the traditional

physical security focus, into new research dimensions.

6. Acknowledgment

This work has been sponsored by National Science Foundation (NSF), USA, under

award number 0968445. “OKES: An open knowledge exchange system to promote

meta-disciplinary collaboration based on socio-technical principles”.

7. References

Ahmad, A. and Whitworth, B. (2011), "Distributed Access Control for Social Networks",

International conference of information assurance and security IAS’11.

Ali, B., Villegas, W., and Maheswaran, M. (2007), ”A trust based approach for protecting user

data in social networks”. Conference of the Center for Advanced Studies on Collaborative

research (CASCON’07), pages 288–293.

Barka, E. and Sandhu, R. S. (2000), "Framework for role-based delegation models", 16th

Annual Computer Security Applications Conference (ACSAC 2000) New Orleans, La. Dec.

11–15). IEEE Computer Society Press, Los Alamitos, Calif., 168–177.

Carminati, B., Ferrari, E., and Perego, A. (2006), ”Rule-based access control for social

networks”. On the Move to Meaningful Internet Systems: OTM Workshops.

Carminati, B., Ferrari, E. and Perego, A. (2008), “Enforcing access control in web-based

social networks” ACM Transactions on Information & System Security.

Clark, D. D., and Wilson, D. R. (1987), “A Comparison of Commercial and Military

Computer Security Policies,” IEEE Symposium of Security and Privacy, pp. 184–194.

Ferraiolo, D. and Kuhn, D. R. (1992), “Role-Based Access Control,” NIST-NSA National

(USA) Computer Security Conference, pp. 554–563.

Freudenthal, E., Pesin, T., Port, L., Keenan, E., Karamcheti, V. (2002), “dRBAC: Distributed

role based access control for dynamic coalition environments” In ICDCS '02: 22nd

International Conference on Distributed Computing Systems (ICDCS'02).

Gaaloul, K., Zahoor, E., Charoy, F., and Godart, C. (2010) “Dynamic Authorisation Policies

for Event-based Task Delegation”, Advanced Information Systems Engineering, 22nd

International Conference, CAiSE, Hammamet, Tunisia.

Gasser, M., and McDermott, E. (1990), “An Architecture for practical Delegation in a

Distributed System”. IEEE Computer Society Symposium on Research in Security and

Privacy. Oakland, CA.

Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G. L. (2010), “A constructive conditional

logic for access control: a preliminary report”. 19th European Conference on Artificial

Intelligence. pp.1073~1074.

Karp, A. H., Haury, H. and Davis, M. H. (2009), “From ABAC to ZBAC: The Evolution of

access control models”, Technical Report HPL-2009-30, HP Labs.

Lampson, B. W. (1969), “Dynamic Protection Structures,” AFIPS Conference Proceedings,

35, pp. 27–38.

Simpson, A. (2008), “On the need for user-defined fine-grained access control policies for

social networking applications,” In SOSOC '08: Workshop on Security in Opportunistic and

social networks, New York, USA, 2008.

Tapiador, A., Carrera, D. and Salvachúa, J. (2011), "Tie-RBAC: an application of RBAC to

Social Networks". Web 2.0 Security and Privacy, Oakland, California.

TCSEC, Trusted Computer Security Evaluation Criteria (TCSEC) (1985), DOD 5200.28-STD.

Department of Defense.

Varadharajan, V., Allen, P. and Black, S. (1991), “An Analysis of the Proxy Problem in

Distributed systems”. IEEE Symposium on Research in Security and Privacy. Oakland, CA.

Whitworth, B., and deMoor, A. (2003), “Legitimate by design: Towards trusted virtual

community environments”. Behaviour and Information Technology Journal, 22:1, p31-51.

Whitworth, B., deMoor, A. and Liu, T. (2006), “Towards a Theory of Online Social Rights”,

in R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM Workshops, LNCS 4277, pp. 247 –

256, Springer-Verlag Berlin Heidelberg.

Whitworth, B. and Liu, T. (2009), Channel email: Evaluating social communication

efficiency, IEEE Computer, July, p63-72.

