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ABSTRACT 

IS researchers may wonder why computing advances often confound expectations. The leisure 
society, the paperless office, and programmer decline are just a few predictions that didn’t 
happen. If current expectations are to be any more accurate, we must learn from experience. As 
we create e-systems to rival ourselves, and networks to match society, the problem may be a 
limited view of system performance. The Technology Acceptance Model (TAM) sees performance 
as functionality plus usability. The Web Of System Performance (WOSP) model presented in this 
paper extends TAM to include other requirements common in performance research literature. 
WOSP is a theoretical framework for the balanced design and evaluation of advanced information 
systems, as now being created on the Internet and elsewhere. It analyses performance via four 
fundamental system elements: boundary, internal structure, effectors and receptors. Each can be 
designed for opportunity or risk, giving eight performance goals, whose design tension comprises 
a “web” of performance. It explains why advances sometimes “bite back”, and need creative 
system requirements integration. The theory applies to hardware, software, cognitive, or social 
system levels, but as each level is a different “world”, it cannot be instantiated across levels. The 
WOSP model should  interest those designing or evaluating advanced software systems. 

KEYWORDS: system performance, functionality, usability, reliability, security, flexibility, 
extendibility, connectivity, confidentiality, privacy, openness, non-functional requirements, 
qualitative requirements, technology acceptance model, TAM  

INTRODUCTION 

We all like to crystal ball gaze. After all, if we knew where the future was going to be, we could be 
there when it arrived, as “fore-warned is fore-armed”. It seems sensible to divine the future from 
the trends of the present. Yet often in computing, expected trends do not occur, or at least not in 
the way expected. For example, over twenty years ago it was predicted that paper would soon be 
dead, replaced by an electronic “paperless office” [Toffler, 1989]. Today, despite the electronic 
revolution, paper is alive and well. Due to electronic communication, more paper is being 
produced than ever before, not less.  

Shortly after Toffler’s forecast, a New Zealand company wrote an application generator called 
“The Last One”, claiming, as its name implies, to be the last program that programmer’s would 
write. They followed James Martin, the guru of programmerless programming, who predicted that 
users would generate applications, making programmers redundant. Many of us then agreed that 
perhaps programming was a dying art - but it never happened. The demand for programmers has 
never faltered, and today is still rising. As Software Development notes: “What happened to the 
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promise of programming without programmers?” [Keuffel, 2001]. User application generation 
gave more, not less, programmer work. Possibly the earliest prediction failure was the “leisure 
society”, that was to arise as machines took over human work. The reality is that modern workers 
are busier, and more stressed, than ever before [Schor, 1991].  

Why did these expectations, and many others like them, miss the mark? How can the informed 
opinion of the day be so wrong? More important, are we repeating the same errors today? If so, 
what is the cause? The story of blind men describing an elephant seems to summarize the 
problem – one grabbed its tail and declared it like a rope and bendy, one took a leg and said it 
was like a pillar and fixed, one felt an ear and thought it like a rug and floppy, while yet another, 
holding the trunk, said it was like pipe, and very strong [Sanai, 1968]. The focus varied with the 
viewer, but no-one saw the elephant. We propose that the “elephant” confounding our predictions 
is an advanced system [Casti, 1997], and our error is to analyze system aspects in isolation. If all 
remained fixed except work production, computers might have created a leisure society. But they 
changed the whole of society, not just work, so the effect was not as predicted. Equally, 
computers altered application development as a whole, and again the total effect denied the local 
prediction of programmers becoming extinct. We propose a simple principle: To design and 
evaluate an advanced information system it must be viewed “in toto”.  

A simple tool’s performance is mainly its functionality, but software is no longer a simple tool. 
Software performance now involves multiple aspects that may contradict [Alter, 1999]. Over a 
decade ago, Goodwin argued that if people find software unusable, it performs poorly [Goodwin, 
1987]. The Technology Acceptance Model (TAM) proposes that both usefulness (functionality) 
and ease of use (usability) affect user acceptance based on perceived software performance 
[Davis, 1989]. But are functionality (what a system does), and usability (how it does it), the sum 
total of performance? For example, security seems also important [OECD, 1996]. On the World 
Wide Web, scalability seems equally important [Berners-Lee, 2000]. Alter adds reliability, 
responsiveness, and conformance to standards to the list [Alter, 1999]. Non-functional IS 
requirements can be system critical [Nixon, 1998], but what they are and how they interact is 
unclear. Yet awareness of the range of demands on software design is increasing. Usability is a 
movement in its own right [Nielsen, 1993]. A study by Department of Commerce's National 
Institute of Standards and Technology estimated that software errors cost the U.S. economy 
$59.5 billion annually [NIST, 2002]. The success of the web has led to a world wide effort in open 
standards [Gargaro et al., 1993]. Adaptive middleware is now considered a key ingredient for a 
new generation of open, flexible and connected web software [Agha, 2002]. This paper extends 
the TAM duality into a multi-attribute model of performance, representing the variety and 
complexity of software today.  

A SYSTEMS APPROACH TO SOFTWARE PERFORMANCE 
Over thirty years ago Bertalanffy was struck by the surprising isomorphies of concepts, laws, and 
models, in various fields like physics, biology, psychology, sociology and chemistry [Bertalanffy, 
1968]. For example, the first author derived a formula for social disagreement [Whitworth and 
Felton, 1999] of the same form as one for ecological diversity in biological habitats [Pielou, 1969]. 
General systems theory proposes such commonalities arise from the nature of systems, and we 
now consider system performance in this sense.  

PERFORMANCE AS THE SYSTEM-ENVIRONMENT INTERACTION 
If every system exists in an environment, its performance can be defined. 

Performance  
A system’s performance is defined as: 

 How successfully it interacts with its environment,  

especially that it continues to interact with the environment. If users do not use an information 
system, it fails as a product, and we say it did not perform well. So performance depends on 
whatever affects the system-environment interaction. 

World  
To interact with its environment, a system must be of the same type. It must exist in a given type 
of “world” that defines its nature as the nature of that world. Examples are the physical world, the 
world of information, and the social world, giving physical systems, information systems and 
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social systems. To define system performance, a world type must first be defined. This axiom is 
basic to a systems approach. 

Environment 
The environment is that around a system which interacts with it. What “succeeds” in a system-
environment interaction depends on how the environment responds. In Darwinian evolution, the 
environment determines what adaptations “work”, i.e. perform well. System performance is thus 
relative to the environment, not absolute. Three things seem relevant:  

• the number of opportunities,  

• the number of threats, and  

• the rate these change.  

In an opportunistic environment, right action can lead to great benefit. In a risky environment, 
wrong action can lead to great loss. In a turbulent environment, risk and opportunity change 
quickly. An environment can be any combination, e.g. it could be opportunistic, risky, and 
turbulent.  

Reproduction  
Every system must somehow be created. Software systems are built, while organic systems are 
born, but both creations involve cost or effort. Reproductive systems can create other systems 
like themselves – one system operation is creation (i.e. reproduction). The issue of reproduction 
is outside our scope as, other than small virus programs, few computer systems reproduce. 

FOUR ELEMENTS OF SYSTEM PERFORMANCE 
To interact with an environment requires four basic system elements. 

Boundary  
If it exists in some world, a system must separate what is system from what is not. It needs a 
boundary to divide itself from its surroundings, e.g. a social community’s boundary defines who is 
and is not in that community. The first element affecting a system’s interaction with its 
environment is its boundary. 

Internal Structure  
Given a system existing within a boundary, either it is one indivisible thing (as the atom was once 
thought to be), or it contains constituent parts [Esfeld, 1998]. How these parts form and interact to 
give system activity, the system’s internal structure, is the second proposed element affecting 
system performance. 

Effectors/Receptors  

Any system interacts with its environment in a feedback loop over time. Feedback favors some 
parts specializing in acting upon the environment (effectors), while others specialize in gathering 
environment information (receptors). For example, we have eyes and ears to sense the 
environment, and hands and feet to act upon it.  

EXAMPLE 

A cell, the simplest biological system, began by forming a boundary (the cell membrane) [Alberts 
et al., 1994]. While simple procaryote cells are internally undifferentiated, distinct organelles soon 
appear with different cell functions, and complex chemical control mechanisms evolve to manage 
and support the system (e.g. the nucleus). An amoeba has no specialized parts for acting and 
sensing, but simple eucaryotic cells like Giardia have flagella (effectors), which act to move it 
about, and complex cells like protozoa include light sensitive photo-receptors. We ourselves, 
though highly advanced, still have a skin boundary, senses to receive input, muscles to act 
externally, and structured internal sub-systems to manage and support. 

 

We suggest four basic system elements: 

1. Boundary: To separate the system from its environment. 
2. Internal structure: To support and coordinate system activity. 
3. Effectors: To act upon the environment. 
4. Receptors: To analyze environment information. 
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SYSTEM LEVELS 
Computer systems are recognized as systems in the general sense [Churchman, 1979]. At the 
lowest level, as hardware, a computer is a mechanical system with a physical boundary (its 
casing), an internal architecture, keyboard and mouse “receptors”, and printer and screen 
“effectors”. But a computer is not only chips and circuits, it is also a software system with a 
boundary separating system from non-system memory, across which input/output data enter and 
leave the system. Software contains an internal structure, with parts calling and comprising 
others in complex ways. Some subroutines process input, like biological receptors, while driver 
programs, like biological effectors, act on the system’s environment.  

Hardware and software systems together are often called information technology (IT), but higher 
system levels exist [Boulding, 1956], as “the system” can also be the human-computer 
combination [Alter, 1999; Littlewood et al., 1993], e.g. a plane is a mechanical system, but the 
plane plus the pilot is also a system. This combination is the basis of human-factors design, 
where “the system” now includes human cognitive processing [Sanders and McCormick, 1993]. 
Just as mechanical systems act on physical objects, and software systems act on information 
objects, so cognitive systems create and respond to meaning, which derives from, but is not the 
same as, information. For example, Shannon and Weaver noted that while transmission errors, or 
“noise”, decrease meaning,  they actually add information to a message (by increasing signal 
choices) [Shannon and Weaver, 1949, p109]. Human meaning distinguishes “relevant” from 
“irrelevant” information, and, as Weaver notes: “The concept of information developed in this 
theory at first seems disappointing … because it has nothing to do with meaning.” [Shannon and 
Weaver, 1949, p116]. Hence computer-mediated group interaction can be analyzed in terms of 
cognitive meaning generating processes [Whitworth et al., 2001]. Finally a computer-mediated 
community can be considered a socio-technical system, with social processes that can be 
modeled [Herrmann and Loser, 1999; Whitworth and Felton, 1999].  

Four System Levels.  
The foregoing results in four system levels. based on IS literature, as shown in Figure 1.  
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Figure 1. Information System Levels 

 

Each level “emerges” from the previous, and adds a new level of causality. Information derives 
from mechanics, cognitions from information, and society from common individual cognitions. The 
term “information system” includes people and business processes as well as hardware and 
software, i.e. it includes cognitive and social levels. When Alter defines a work system as 
hardware, information, people and business processes [Alter, 2001], he is defining an information 
system which at its highest level is a socio-technical system. Its performance can be analyzed on 
four distinct levels. IS failure can occur at the: 

• hardware level (chip overheating),  
• software level (program infinite loop),  
• HCI level (user misunderstanding), or  
• social level (users feel the system opposes their culture).  

System failure at any level affects those above them(if the hardware fails, the software must too), 
but success at one level does not imply success at a higher one. Each level adds requirements. 
Social requirements add to HCI requirements, which add to software requirements, which add to 
hardware requirements. For example, a virtual community IS could perform well as hardware, use 

 
 

 
 



262                          Communications of the Association for Information Systems (Volume 12, 2003) 258-282                         

 

The WOSP Model: Balanced Information System Design and Evaluation by  B. Whitworth and M.  Zaic       

bug-free software, offer excellent user interaction, but fail as a social system if users do not trust 
it to be fair. 

The WOSP model applies to any level system, but cannot be instantiated at more than one level 
at a time, because each is a different world. Each level is a total “world view” in itself. A full 
mechanical description of a computer system describes every voltage and circuit change. 
Likewise a full information description describes every bit and variable value, and a cognitive 
description covers every percept and concept. Each description is entire in that “world”, with 
nothing left out. A theoretic that combined these levels would have to do so in a “world of worlds”, 
which is hard to imagine. To regard hardware, software, people, and social groups as micro-
theoretic “interacting entities”, as Barnard proposes, is confusing [Barnard et al., 2000, p226]. If 
mechanical, informational, psychological and social entities interact, within what world does that 
occur?  

Higher levels offer more powerful descriptions, e.g. a social description of a bulletin board can be 
more useful than a record of bits and bytes. They are both, however, just different “views” of the 
same base entity. The WOSP model manages each level of a multi-level system separately. It 
applies to any level, but not multiple levels at once, because its axiomatic question is “What world 
is the system in?”. The following analysis mainly uses IT and HCI examples, but mechanical 
system examples are also given for clarity. For a discussion of virtual social system design see 
Whitworth and de Moor [2003]. 

III. INFORMATION SYSTEM PERFORMANCE 
Modern information systems face performance demands like those of biological systems, which 
explains the variety of software available today [David et al., 2003]. But the variety of life 
suggests that success is not only to the strong. Some animals, like tigers, possess powerful 
claws and teeth, but others, like plants, can barely move, yet can survive on air, water and 
sunlight. Some, like turtles, develop strong defensive shells, while others, like bacteria, focus on 
parasitism – using others for their ends. Performance, it seems, involves multiple aspects, which 
we now link to the basic system elements of boundary, internal structure, effectors and receptors. 
If systems must both gain value and avoid loss, each element has a dual role in system 
performance. It can be designed to maximize opportunity or minimize risk, giving eight system 
design goals: 

1. Effector purposes: 
a. Functionality. To act on the environment. 
b. Usability. To reduce the cost of action. 

2. Boundary purposes: 
a. Security. To prevent unwelcome entry. 
b. Extendibility. To use outside objects or material. 

3. Structure purposes: 
a. Reliability. To perform the same despite internal change. 

            b. Flexibility. To perform differently given external change. 
  4. Receptor purposes: 

a. Connectivity. To exchange social meaning. 
b. Confidentiality. To control or limit social meaning exchange. 

Figure 2 shows the web of system performance (WOSP) model. Giving performance values to 
each goal creates a “web”, whose total area, it is proposed, represents overall system 
performance better than any point alone. The WOSP model involves eight elements:  

• Four “active” properties (functionality, flexibility, extendibility, connectivity), that could 
make a system succeed.  

• Four “passive” properties (usability, security, reliability, confidentiality), whose 
absence can cause failure.  

The WOSP model imagines these system properties as connected by elastic, so that increasing 
any one property puts tension on its opposite, and to a lesser degree all the others. It shows 
seemingly opposing goals (such as flexibility and reliability) opposite one another. It is a web 
because the points are not rigidly connected, but merely in “tension”. Superficially, opposing pairs 
seem rigid opposites, where one feature is traded against another, but this is not always so. 
While opposing corners impose different design demands, the “web” can be expanded by 
“pulling” two corners at once, i.e. opposing goals to genuinely expands the web. For example, 
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increasing functionality tends to decrease usability, but it is not inevitable that great results 
require great effort. Mathematicians call the combination of logical power and simplicity elegance, 
a much admired property. The WOSP model of system performance is now discussed in detail.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The Web of System Performance  

 
External factors, like system creation cost, politics, distribution and advertising, lie outside its 
scope. 

FUNCTIONALITY AND USABILITY 
System effectors acting on the external environment, can be designed to maximize action effects 
(functionality), or to minimize action costs (usability). 

Functionality  
Functionality is a system’s ability to act upon its environment. It is not just what the system does, 
but what it does to its environment. A car’s functionality includes its speed, acceleration, and 
cornering. A system’s functionality can be given as a set of desired environment changes. The 
greater the changes, the greater the functionality. An information system’s functionality is its 
ability to change information, e.g. a word processor’s can change a document. The functionality 
of an HCI system is the user tasks it can do, where a task is now a cognitive purpose [Zigurs et 
al., 1999]. The advantage of highly functional software is that it gets the job done - it is task 
effectual. A functionality focus gives “feature” laden software, like Microsoft Office, where each 
new version adds or extends functions, assuming more is better. The unkind term “bloatware” 
describes software with too many features for users to cope with.  

Usability 
If every system action uses resources, usability is minimizing those resource costs. If every action 
costs, it pays to use the minimum effort for a given function, i.e. not using a sledge hammer to 
crack a nut. For a car, lower petrol consumption (miles per gallon) helps performance by 
increasing efficiency. For a mobile phone, lower power use and longer battery life also help 
performance. For software, the resources are CPU cycles and memory. “Light” programs, that 
use little memory or CPU cycles, can easily run as background utilities. Usability implies a 
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minimalist approach to software development, removing “bells and whistles” and reducing waste, 
i.e. “simpler is better”. Reducing action costs can increase speed or agility. For example, reduced 
instruction set computing (RISC) uses less code to do the same work as complex instruction set 
computing (CISC), and therefore acts faster. In cognitive systems, the resource of value is human 
effort, especially for new users easily overwhelmed by detail. Modern screen design aims to 
reduce cognitive effort, for example, by using existing mental models, structuring information in 
chunks, managing attention, and using feedback loops to show information only as required, e.g. 
Windows drag and drop copying uses an existing mental model of spatial movement, and auto-
hide only shows the taskbar when the mouse moves to the bottom of the screen, i.e. when 
needed. Minimizing effort is not always easy, e.g. babies reach for an object with their whole 
body, not just the reaching arm. Only with time does reaching occur without concomitant leg 
waving – the child learns what effort is necessary for a result. Usability improved markedly over 
the last decade, as designers learned to reduce user effort, with graphical user interfaces (GUIs) 
replacing command user interfaces (CUIs). Easy-to-use software is easier to learn, implement, 
operate, and maintain, reducing costs for training, installation, user manuals, and help support. In 
a web setting, usability means a higher percentage of users stay to “click on”. Effort spent on help 
screens, wizards, interface simplification and user feedback does not increase functionality, but 
does increase IS performance, and is now an integral part of software engineering [Dray, 1995].  

Functionality and Usability 
Usability can be taken to include both ease of use and usefulness (or functionality) [Davis, 1989]. 
Others consider functionality (what the system does) a dimension apart from usability (how it 
does it) [Hix and Schulman, 1991], as does the WOSP model. If new functions add cost (in user 
learning or effort), increasing functionality will tend to decrease usability. More functionality 
means more choice, and more choice requires more cognitive effort. An easy way to increase 
usability is to reduce functionality. Functionality and usability are in a natural state of “tension”. 
When under 50% of what a system does is actually used, users may question the cognitive cost 
of that functionality, in long menus and crowded toolbars. In a survey of computer users by 
Information Week, 90% of respondents said the complexity of IT is greater than it ever was 
[Chabrow, 2001]. Yet a critical mass of functionality seems a key factor in software selection – 
perhaps because one never knows if a function might be needed. Given a choice between 
usability and functionality, users seem to prefer functionality, but given equal functionality, 
usability can be critical [Davis, 1989]. It seems to be the reason why users preferred Word to 
Word Perfect – Word offered largely the same functionality, but considerably more usability1.  

One way to add functionality without usability cost is to re-use old learning. For example, the 
same clip and paste interface works for text and graphics, though they are internally different 
functions. Interface consistency reduces user effort, but is not always easy to achieve. For 
example in Windows 98, dragging a file between drives copied it, within a drive moved it, and 
dragging an .exe file created a shortcut. Users did not like the inconsistency, and Windows Me 
dropped the drag an .exe to create a shortcut, though it still applies to files named install.exe and 
setup.exe. Functionality based on existing cognitive resources does not incur usability cost, e.g. 
adding 3D to a web site can increase cognitive functionality by adding depth, but incur no 
usability increase because users (unless their vision is depth-deprived) process images for depth 
anyway. Usability and functionality require different system design efforts, and combining them 
successfully requires additional effort. 

SECURITY AND EXTENDIBILITY 
A system’s boundary controls whether objects or materials in the external environment enter and 
become part of the system or not. It can be designed to repel external entities (security), or make 
use of them (extendibility). 

Security  
Security is a system’s ability to protect itself against unauthorized entry, misuse, or takeover. A 
powerful car does not perform well if it has no locks and is stolen. A security breach is equivalent 
to system failure [Littlewood et al., 1993], and a system failure is a performance failure. Secure 
hardware is sealed and tamper-proof for this reason. Software distributors prefer compiled to 
interpreted software because users cannot alter it. The principle of denying entry is the same for 
                                                     

1 One could learn Word in a week, but learning Word Perfect took months. 
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hardware and software. The threat of hackers and virus programs makes security important for 
software, involving boundary strengthening (firewalls) or checks (logon identification and 
passwords). Security is, and always was, a critical aspect of IS design. 

The WOSP definition of security is  

“the ability of a system to resist attack” [Littlewood et al., 1993].  

This definition is narrower than the traditional concept of security [DSS, 2001; OECD, 1996], 
which aims to prevent all types of system risk by supporting: 

• Availability, that data and programs are easy for people to access.  

• Confidentiality, or control over information disclosure.  

• Integrity, preserving data and programs from damage.  

The WOSP model recognizes availability as ease of use, or usability, but sees both it and 
confidentiality as distinct from security. It also distinguishes dealing with internal failure (reliability) 
from defending against hostile entry (security) . For example, at an operational level the role of 
the security forces who protect society differs from that of the engineers who maintain it. In the 
body, the immune system defends, while damaged tissue repair involves another system. A 
system can be reliable but insecure (easily penetrated), or conversely secure but unreliable 
(easily breaks down). The WOSP model also distinguishes security from confidentiality. 
Unauthorized system entry does not necessarily reduce confidentiality, and loss of confidentiality 
may occur without system penetration (e.g. an impenetrable but transparent plexi-glass room). 
While security protects the integrity of internal data, confidentiality concerns its display [Ware, 
1984]. 

Extendibility  
Extendibility is a system’s ability to incorporate or use outside elements in system operation. For 
example, a car with a tow bar can attach a trailer, which then becomes, in effect, a part of the car. 
Tool use, a key factor in human evolutionary success, is the use of outside objects to extend 
performance. The tool becomes an extension of the person. Extendibility is sometimes called 
openness. Our hands are open to use tools that extend their functionality, but our feet, while 
capable at what they do, are not open to other functionality. Viruses, organic and computer, show 
how systems with little functionality can use other insecure systems for their own ends. 
Extendibility has been a powerful but surprising critical success factor in modern IS. Many 
thought the early Apple Macintosh a better system than the early IBM PC. It appeared more 
capable, reliable, secure, and usable. But it was a sealed unit, a propriety black box, unavailable 
to third party developers. It was not extendable. The openness of the IBM PC design, with slots 
for expansion cards, may have been a critical success factor in its design.  

For a car to attach a trailer, its tow ball must match the trailer attachment size, or it cannot be 
attached. To be extendable, systems and components must match. One way is to publish 
“standards” that all can conform to. Another is for a system to make its points of extension known. 
The benefits of openness explain the value of Netscape making its browser source code publicly 
available – it increased extendibility. Who would have thought, in the early days of software copy 
protection, that broadcasting source code would be a means of business success? Open 
software can now be extended with downloaded components, such as Internet Java applets, that 
extend the system [McCarty and Cassady-Dorion, 1999]. Object linking and embedding (OLE) 
allows software systems to use other applications as tools to process data. Just as a programs 
can extend what it does, so data objects can be extended. For example, a document can import 
an external graphic if it is of a known standard. A clipboard, that allows clip and paste between 
applications, provides such a standard, allowing data to cross document boundaries.  

Extendibility is about the benefits of opening rather than closing the boundary, letting things in not 
keeping them out, about opportunity not risk. Third party “plug-ins”, and open systems 
architecture, are now an established feature of IS performance.  

Security and extendibility 
Increasing security means a “thicker” system boundary, whether for a network or a society. 
Ultimately the system is like a fortress, with extensive outer defenses, and a small active center. 
Increasing system security seems to go with centralization of system control, and decreased 
movement of material and goods across the boundary. Closed societies that focus on security, by 
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restricting borders and centralizing control, find the reduced trade depresses economic 
performance [Popper, 1945]. Just as functionality and usability are in a state of tension, so are 
extendibility and security. Here the tension is between using and denying what is outside. While 
security is paramount in dangerous environments, it excludes good influences as well as bad. 
Too much security, like too little, can reduce system performance. Every download, every e-mail 
attachment, could be a Trojan horse or a gift horse, a danger or an opportunity . Eric Raymond’s 
analogy of the cathedral versus the bazaar styles of software development aptly expresses the 
contrast between security (the cathedral) and openness (the bazaar) [Raymond, 1997]. The 
Internet illustrates the power of extendibility. Its security is weak, but it was designed to be highly 
scalable (easy to extend) [Berners-Lee, 2000]. Some predicted it would soon collapse, being so 
insecure, but by extending and decentralizing itself, it became strangely strong. The Internet’s 
strength is that were it destroyed tomorrow, people would simply rebuild it – its autonomous parts 
would recreate the system.  

Combining security and extendibility means recognizing the natural tension between letting things 
in and keeping them out. Security is not simply building a fortress, nor is extendibility giving 
everyone the key. Both are part of system performance, and software designers must find 
creative ways to combine them.  

RELIABILITY AND FLEXIBILITY 
A system’s internal structure manages and supports the system. It can be designed to perform 
the same over time despite internal changes (reliability), or to perform differently to fit 
environmental changes (flexibility). 

Reliability 
Reliability is a system’s ability to continue or recover performance despite internal variations, like 
part failure. It can be measured as the probability of failure-free operation for a specified length of 
time [Littlewood et al., 1993]. A car that is slow, but always starts reliably, is indeed a wonderful 
system. Reliable systems continue to operate under high stress or load. If affected, their 
performance degrades “gracefully”, rather than crashing catastrophically, and if they do fail, can 
be repaired quickly. Error code is essentially code to recover functionality that failed, i.e. to 
increase reliability. Reliable systems can be trusted to perform, and as planning requires 
predictability, users may trade functionality for reliability. Unfortunately computer systems are not 
well known for reliability [Weiner, 1993], and “If builders built buildings the way programmer’s 
wrote programs, then the first woodpecker that came along would destroy society.” [Weinberg's 
law as quoted in Dickson, 1999, p184]. If appliances were sold like software, e.g. a refrigerator 
with a list of “known faults” and recommended “work arounds”, there would be a public outcry. 
While experienced users never buy version 1.0 of any software, a trend to reliability is emerging, 
as users demand it, e.g. Windows XP marketing stresses its greater reliability. Companies like 
Dell guarantee reliability through expensive after-service support, and their customers recognize 
that value. Computer warrantees increased significantly in the last decade, so the cost of 
replacement and repair is a good reason to produce reliable systems. Reliability is, and always 
was, an important aspect of computer performance.  

Flexibility 
Flexibility is a system’s ability to “fit” different environments, and not be rendered ineffective by 
changing circumstances, e.g. a tracked vehicle trades speed for the ability to operate in any 
terrain. In IS, flexibility is also called portability or adaptability. A portability review for groupware 
reported how a University’s plan to meet in a nearby IBM Decision Support Center was thwarted 
by the weather: one participant proclaimed “What good is all this technology when a little snow 
can stop the whole thing?” [Wheatley and Flexner, 1991]. Distributed e-mail systems, by contrast, 
perform regardless of weather or place. Flexibility enjoys a long history of relevance in IS. 
Acrobat documents are now marketed on their platform flexibility (PC, Mac and Palm). CSMA/CD 
(Ethernet) protocols, which give nodes flexible network access as required, largely replaced 
polling protocols, which inflexibly check every node regardless of demand, even though polling is 
more reliable. Likewise, in database design, the more flexible relational model largely displaced 
hierarchical and network models. Most software now includes a “preferences” module to 
configure it, e.g., for different users, countries, and networks. For example, the Windows control 
panel can adapt Windows for disabled users. Language conversion modules change software 
into any language, and cultural conversion modules could follow. Flexibility is especially important 
in social software, as the first author discovered when designing a groupware system with over 
150 changeable design parameters for such issues as who could comment, mail availability, vote 
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visibility, and more. It was expected that user preferences would soon define the best group 
interaction configuration. This forecast didn’t happen. Every new group situation demanded a 
new configuration. After some years, it became apparent that no configuration is “best” for human 
social interaction because variability is the rule not the exception [Whitworth et al., 2001]. System 
flexibility, designed initially as a research luxury, became in the end a practical necessity. In IT 
management, the need for flexibility is linked to the turbulent business computing environment 
[Knoll and Jarvenpaa, 1994], and is an important critical success factor in the fast changing world 
of computers. 

Reliability and Flexibility 
Reliability and flexibility impose contradictory design requirements on internal structure. A 
system’s base reliability depends on component reliability. Perfectly reliable components should 
result in a perfectly reliable system – but this outcome is rarely the case. Emergent reliability 
arises from how system parts interact. If each part’s output is another’s input, system reliability is 
the product of the part reliabilities, e.g. a system of 100 sequential components each with 99.9% 
reliability has only a 90% reliability, and one with a thousand components has only 37% 
probability of correct performance. If the system fails when one part fails, reliability drops 
drastically as the number of parts increases, i.e. as systems develop. Reliability thus favors 
reducing part inter-dependencies. Therefore, programming texts advise minimizing subroutine 
interactions (or coupling) to reduce error. Another way to increase reliability is duplication or 
redundancy. A plane may duplicate critical control cables, so if one fails the other can take over. 
In information exchange, redundancy (information duplication) protects against transmission 
failure, perhaps why English is about 50% redundant [Shannon and Weaver, 1949, p104]. In 
ASCII transmission the redundant check digit may signal an error, requiring re-transmission 
(recovery). The military cross-train personnel, so if some die, the rest can continue. An army of 
perfect specialists would be maximally efficient, but also maximally fragile. In sum, de-coupling 
and redundancy are ways to increase reliability.  

Now consider the demands of flexibility - to fit functionality to environment change and be change 
receptive. Base flexibility again derives directly from part flexibility. A tracked vehicle, such as a 
military tank, is flexible because its tracks operate on a variety of terrain. But often this is not so. 
Although one can replace parts entirely, like a “flexible” business that simply fires and hires as 
times change, adding or removing system parts is expensive. Nature prefers emergent flexibility, 
which derives from how parts interact, like a company that re-structures jobs internally when 
times change. Emergent flexibility is the variety of adaptive configurations a system can adopt, 
like a flexible person who can “flex” into a variety of yoga positions. For example, a car can attach 
chains to travel in snow, giving a new configuration, and then remove them for highway driving. 
Because more parts to configure means more effort, an 8-wheel vehicle is harder to convert than 
a four wheel one. Flexibility thus favors less redundancy, not more (as reliability does). Hence 
programmers are taught modularity – to place each logic in a single place, and make all other 
uses sub-routine calls. Then, if needs change, the programmer must change only one place. 
However such modularity increases part interaction, which as shown earlier, reduces reliability. 
Reliability seeks to contain ripple effects, where one error spreads and crashes the system, but 
coupling can also increase adaptive variability. Millions of colors are generated by the eye from 
the interaction of just three retinal frequency receptors (red, blue and green). The astounding 
information power of genetic code, where a zygote the size of the period at the end of this 
sentence contains enough information to create a human being, arises from gene interaction. 
Rather than one gene affecting one trait, many genes combine to affect each trait, and most 
genes affect many traits. More information can be stored in the interactions than in the elements 
themselves. In sum, interactivity and modularity are ways to increase flexibility.  

Reliability and flexibility are in a natural design tension. Increasing flexibility tends to decrease 
reliability because every change is also an error opportunity. For example, Windows users can 
flexibly change their file type associations. The first author accidentally associated icon files 
(*.ico) and Word, so every desktop icon became a Word file, effectively disabling the desktop. If 
reliability and flexibility are in design tension, to increase performance designers must address 
both at once, e.g. early Windows users could flexibly change their screen settings, but changing 
to an unsupported screen level meant the user could not recover, as they could no longer see the 
screen. Now, unless the user confirms screen changes within a few seconds, the system 
recovers the previous settings, i.e. more flexibility also required more reliability. Many options 
modules now include a “Restore Defaults” button, so users can recover from changes. Likewise 
increasing reliability may require more flexibility. For example, Windows Me’s System File 
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Protection (SFP) scans system files and replaces suspicious ones with the originals. It seems a 
great idea to avoid file corruption errors. However flexibility was ignored, as it uses fixed criteria, 
set when Windows Me was released. Therefore, if you upgrade an application to a better driver, 
SFP will instantly undo the upgrade next time it runs. SFP design ignored the fact that systems 
must change as well as not change; hence, experienced users often disable it.  

Perfect reliability, like perfect security, seems a myth. While theoretically error code covers all 
contingencies, in modern event driven software, the combinations increase factorially with the 
number of messaging objects. Perfect reliability soon becomes practically impossible, as every 
combination cannot be checked. In a changing environment, perfect reliability may be a fault not 
a virtue. Hence designers of computer agents searching the Web are exploring the benefits of 
serendipity, or chance system variability (i.e. unreliability!) [Campos and Figuerido, 2002]. As 
software advances, the WOSP model suggests that combining reliability and flexibility is more 
beneficial than seeking either exclusively, giving what is called internal and external robustness 
[El Sawy and Nanus, 1989]. 

CONNECTIVITY AND CONFIDENTIALITY 
The world wide web introduced a new social dimension to software performance, involving 
communities, conversations and networks. Social interaction is a performance multiplier, critical in 
human biological success [Maturana and Varela, 1998]. People in societies create non-zero-sum 
benefits from the synergy of cooperation using communication [Wright, 2001]. While previous 
purposes are individualistic, communication requires two or more systems. Systems can be 
designed to enable information and meaning exchange (connectivity), or to limit it 
(confidentiality). 

Connectivity 
Connectivity is the ability of a system to support information and meaning exchange, about the 
external world, personal states, and group action [Whitworth et al., 2000]. Functional actions were 
earlier attributed to effectors, because effectors create actions. Even so, actions occur in a 
feedback loop, where perception plays a guiding role. Communication also involves a feedback 
loop, but the end result, meaning, is now created by receptor activity. Meaning is created by 
system receptors, just as actions are created by effectors. A car’s horn works because other 
drivers hear and attach meaning to it. For cars to be connected, they would need to directly 
sense each other (e.g. to avoid crashes using radar receptors). The signals of communication are 
arbitrary. For example, people can communicate by voice, sign language, facial expression, 
smoke signals, and in many languages. Communication requires no particular signal, only 
common processing. When children learn a language, they learn common ways to process 
arbitrary signals. This requires not strong muscles, claws or teeth, but “strong” eyes, ears and 
sensory processing. Computer communication also requires common processing. Protocols like 
ASCII, RS232 and TCP/IP are essentially “social” agreements on how arbitrary signals are 
processed. Connected software allows users to interact socially with others, or can itself connect 
to stay current by downloading updates. Connectivity includes how signals are routed, for 
example circuit vs. packet switching. It also includes the number of channels, channel bandwidth, 
immediacy, symbol variety, and rehearsability [Dennis and Valacich, 1999]. 

Connectivity is distinct from functionality, as its goal is meaning exchange, not environment 
change. Without a listener, speaking is functionally just the creation of air turbulence. An e-mail 
system’s functionality is its ability to act as a word processor, and create message content. By 
contrast, its connectivity is its ability to send and receive messages. A system could create 
graphical messages, but only connect by an ASCII text channel, or vice-versa. Connectivity is 
also distinct from extendibility. Communicating parties have mutual choice, but when a virus 
program uses another system, it is not a mutual affair. Importing information into a document is 
not communication, which requires an independent and autonomous other. In today’s online 
world, connectivity is an important new aspect of system performance. 

Confidentiality  
Confidentiality is a system’s ability to limit the release of information about itself. Not releasing 
information can be as important as communicating. Car anti-radar equipment tries to confound 
radar detectors, and tinted windows keep out prying eyes. Camouflage in animals is an attempt to 
keep confidentiality, as are military “stealth” capabilities. In a social setting, confidentiality is 
usually called privacy, and is important because how one is viewed affects how one is treated 
socially. Being viewed significantly energizes the viewed party, an effect psychology calls social 
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facilitation [Geen and Gange, 1983]. Confidentiality is important for social beings, whose well 
being depends heavily on how the group sees them. Most people do not wish to be viewed 
asleep for example, as unconscious words or acts could lead to ridicule or contempt. In software, 
subroutines can declare variables private (not released) or public (released). Good reasons exist 
not to make all variables public. Encryption is one way software can protect information from 
display. 

Privacy seems based on the idea that a system should own information about itself [Whitworth 
and deMoor, 2003], and hence have the choice to release it or not. US Supreme Court Justice 
Louis Brandeis described privacy as the ‘right to be left alone’, i.e. to not communicate. 
Confidentiality  is as important as connectivity in social interaction. The widespread selling and 
storing of personal information on the web for profit, with effects from identity theft to electronic 
“spam”, led to public complaint [Wright and Kakalik, 1997]. Online actions can be recorded 
electronically, limited only by a storage capacity that is doubling every eighteen months. It may 
soon be simple to record all actions of all people on the Internet. If so, everything said and done 
in cyber-space could, as is currently the case for public media figures, be “on a record”. Without 
privacy, something said in a chat room by a person at 18 could be publicly re-quoted twenty 
years later. For example, statements Billy Graham made about Jews, in a supposed private 
telephone conversation with Richard Nixon over twenty years ago, were recently released, much 
to his chagrin, when Nixon’s tapes were made public. Few private citizens would like everything 
they said on a permanent, searchable electronic record. Computers could make cyber-space an 
unforgiving place, where everyone is a public figure, always “in view” and “on record” [Brin, 1998]. 
It does not have to be this way. Johnson [2000] makes the case that privacy is a social good, 
allowing people to be themselves, free from social pressure. Confidentiality seems a “sleeper” 
issue whose importance will increase as the Internet becomes more social [Agre and Rotenberg, 
1997].  

Connectivity and Confidentiality 
While connectivity increases information and meaning exchange, confidentiality limits it. Both are 
natural requirements of social interaction, and naturally opposed. Yet privacy is not just about 
holding back personal information, but rather about user choice over their own information 
[Nissenbaum, 1997]. People want to communicate by choice, and be private by choice. For 
example, when you enter a public space you can see others, but equally they can see you. You 
choose to be viewed so that you can also view. To be like the invisible man, able to see others 
who cannot see you, seems an unfair social arrangement. Fairness – that if you see another, 
they should be able to see you – seems a way to reconcile connectivity and confidentiality 
[Whitworth and deMoor, 2003].  

IV. USING THE WOSP MODEL 

The WOSP model can be used as a: 

• Process oriented system design framework for designers developing systems, or  
• Product oriented evaluation framework for users making system purchases.  

WOSP REQUIREMENTS SPECIFICATION 
 While most system design models, like the waterfall model, define how design should proceed, 
the WOSP model defines design goals. It is a multi-goal orientated approach to requirements 
engineering, as suggested by Chung et al.[1999] As goals may contradict, design becomes a 
balancing act in the space of system performance. The overall goal is system performance, i.e. 
successful environment interaction. It is a more dynamic approach to software engineering than 
the traditional one-dimensional production line path to “excellence” via fixed specifications [Clegg 
et al., 1997]. It suggests the following for advanced system design: 

1. Environment fit. Performance profiles must “fit” the environment . 
2. One-dimensional development. Can be of limited value. 
3. Balanced development. May give the most benefit. 
4. Combination breakthroughs.  May be necessary for system success. 
5. Development strategy. Need both more specialization and integration. 

Environment Fit 
The web of performance is a multi-dimensional performance space, in which different system 
designs position themselves. Each design has not only a capacity, but also a profile. Which 
profile aspects are valued depends on the environment or situation. Some require systems with 
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simple functionality but high security, others need high usability but ignore confidentiality. While 
excellence in all areas is ideal, one may deliberately choose efficiency of code size over run-time 
flexibility, if this approach “fits” better. In a rapidly changing world, flexibility and extendibility may 
be important, while in a threat environment, security and privacy may need more focus. For a 
mobile workforce, the time to learn a system (usability) may be critical - a system that takes three 
months to learn is of little use if workers tend to leave after 6 months. Designers could estimate 
the resource allocated to each goal, as shown in Table 1, to get a system development profile.  

Table 1. WOSP Goal-Environment Fit 
Goal Detail Resource% 

Functionality To act effectively upon the environment.  
Usability To operate efficiently, easily or quickly.  

Security To resist or avoid outside attack or take-over.  
Extendibility To use outside components or data.  

Reliability To avoid or recover from internal failure.  
Flexibility To change to fit outer circumstances.  

Connectivity To communicate with other systems.  
Confidentiality To control internal information release.  

Performance To interact successfully with environment. 100% 
 
One-Dimensional Development 
The WOSP model suggests that improving any aspect of system performance can create tension 
in others. For example, the connectivity of the Internet raises design problems for security [James 
et al., 2001] and privacy [Lessig, 1999]. Early developments may be easy, because “slack” is 
available, but as performance increases so, it is suggested, does the tension. The more a system 
advances, the harder it is to advance further by single feature progress. If the web of 
performance is elastic, pulling the web at a single corner only may reduce the value at other 
corners, so one-dimensional technology gains can “bite back”:  

“The more powerful systems have become, the more human time it takes to 
maintain them, to develop the software, to resolve bugs and conflicts, to learn 
new versions, to fiddle with options.” [Tenner, 1997, p266].  

The designer’s paradox is that adding a feature can even reduce system performance. For 
example, consider adding video/multi-media functionality to e-mail. Video e-mail could then 
become less usable (need extra training). Video-viruses may be easier to conceal in multi-
channel data, reducing security. Extendibility could be less, if video e-mail cannot be printed. It 
could be less reliable (more likely to fail), and less flexible if versions do not exist for Macintosh or 
Unix users. It could provide less connectivity if it overloads network channels. Finally, if users 
cannot control where the camera points, they may release unwanted information (such as about 
the room behind). Who wants to tidy their room before sending an e-mail to Mother? A gain in 
functionality could reduce usability, security, extendibility, reliability, flexibility, connectivity, and 
confidentiality. Depending on the value of video, the result could be a net performance loss. For 
video e-mail to out-perform current e-mail, and supercede it, developers cannot just add video 
functionality, but must “weave” it in with other performance goals. 

Balanced Development 
Unintuitive as it seems, improving a system’s best aspect, which probably contributed most to its 
success, can be the worst way to increase performance, even though this aspect is the current 
design focus, and where pundits look to predict the future. If performance is the web’s area, it is 
most increased by improving the weakest (and least obvious) aspect. This concept seems why 
technology trends tend, after a while, to go in unobvious directions. For example, virtual reality 
goggles were touted a few years ago as the future of gaming (based on previous multi-media 
gaming advances). However it did not take off, while interactive gaming, connecting in virtual 
social worlds, became popular (e.g. The Sims). Games also became more extendable, as users 
produced plug-in files to add new creatures, weapons, and even rules, e.g. Doom’s WAD files. 
Game editors allow users to create scenarios or maps that others can download and play, and 
expansion packs that extend games sell well. Similarly in business, while more of the same 
media richness was seen as the future of IS, recent advances are in anytime, anywhere flexible 
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computing. That balance, rather than power, is the key to success may explain why broadly 
successful “killer’ applications, like browsers, e-mail, and chat rooms, are surprisingly simple in 
their functionality. 

Combination Breakthroughs 
Application advances often do not come easily. In 1992 Apple CEO John Sculley introduced the 
portable, hand held Newton, saying portability was the wave of the future. We now know he was 
right, but developing flexibility alone was not enough. The Newton’s handwriting recognition was 
poor, making it hard to use, and in 1998 Apple dropped the line. The flexibility advance was 
neutralized by reduced usability. Only when Palm solved the usability problem, with its Graffiti 
language, did the market for PDAs revive. The WOSP model implies that as systems advance, 
simply increasing one system aspect alone may be insufficient. Advances may require 
combination breakthroughs, i.e. simultaneous development at more than one corner of the web.  

Development Strategy  
The WOSP model implies that as systems advance, development will require a multi-focus effort, 
with both more specialization and more integration. But why not just create one list of “system 
requirements”? Although possible, designing a user interface and a database update require 
different skill sets. Designing for plug-in extendibility needs knowledge of data standards, while 
security design needs knowledge of virus threats, suggesting specialized teams of various sizes 
for each goal, e.g., a security team, a usability team, a standards team, and a privacy team. 
Table 2 suggests how each team could design a different system layer, with different 
specifications, code, and testing. for example, error code can be designed, written and tested 
apart from functional code.  

Table 2. WOSP Layers for Analysis, Design and Testing 

Goal Analysis Design Testing 
Functionality, 
capability, 
usefulness, 
effectiveness 

Functional analysis: Analyze 
desired environment effects 

Main application layer: 
What the system does 

Validity testing: 
input/output test bed 

Usability, 
simplicity, 
parsimony, 
efficiency, ease 

Usability analysis: Analyze 
user processing costs, 
feedback cycle time, cognitive 
effort, simplicity 

Interface layer:  
Help system, tutorials, 
wizards, advice pop-ups, 
status bar feedback 

Usability testing: cognitive 
walk through, protocol 
analysis, user heuristics 

Security, 
defense, 
protectiveness 

Threat analysis:  
Analyze external threats and 
denial methods, identify weak 
points 

Security layer: 
Logon and system entry, 
authorization and security 
levels 

Penetration testing: 
Unauthorized entry 
probes, attack tests, 
hacker simulation 

Extendibility, 
openness, 
scalability, 
compatability 

Interoperability analysis: 
Analyze third party data, 
standards and tools 

Portal layer, plug-in 
manager, import & export 
data, clipboard 

Compatability testing: 
Plug-in testing, 
import/export testing 

Reliability, 
stability, 
dependability 

Contingency analysis: Analyze 
possible failures & recovery  

Recovery layer, error 
recognition, backup, and 
recovery 

Failure testing: 
Load tests, disaster 
recovery tests 

Flexibility, 
adaptability, 
portability, 
customizability, 
plasticity  

Adaptability analysis: Analyze 
likely environment changes 
and possible responses. 
Includes trends analysis 

Configuration layer, control 
panel options, user 
preferences, system 
parameters, change 
management  

Situation testing: Test 
different hardware 
platforms, languages, 
users, operating systems,  

Connectivity, 
interactivity, 
sociability 

Communication analysis: 
Analyze ability to exchange 
information  

Interaction layer, protocols, 
networking, channel 
transmissions 

Transmission testing: Test 
for sending/receiving 
information.  

Confidentiality 
privacy, secrecy, 
rights 

Legitimacy analysis: Analyze 
who owns what information. 

Rights layer, System 
permissions, transfer and 
delegation of rights 

Social testing: Test the 
community accepts the 
system 

 

Such specialization creates a need for integration, because developing for one purpose may “cut 
across” another [Moreira et al., 2002], giving design conflicts that must be traded-off, prioritized, 
or creatively resolved. For example, a logon sub-system (security) could make a system less 
usable, but equally is a chance to welcome the user by name, and remember their preferences, 
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i.e. also make the system more usable. Specialists must work together to achieve such 
synergies. Though the WOSP design purposes are distinct, there is only one system. Fitting one 
purpose while denying another is like taking from housekeeping to pay the gas bill. Each team 
could flag areas for discussion with other teams, or opposing teams could be combined, e.g., if 
functionality and usability specialists were on the same team, they would tend to reconcile 
differences. This would result in four teams, considering actions (functionality and usability), 
interactions (security and extendibility), contingencies (reliability and flexibility), and 
communications (connectivity and confidentiality).  

WOSP SYSTEM EVALUATION 
 The WOSP model can help evaluate one or more system’s performance. 

Measuring WOSP Aspects  
System aspects like security, usability, and reliability are often considered “quality” features, that 
constrain or modify functionality [Nixon, 1998]. The WOSP model does not make this distinction. 
Every aspect, it is proposed, can constrain or modify another, e.g. usability can compromise 
security, and security can diminish usability. The functionality goal in Table 1 differs from others 
only in being more obvious and easily specified. It can be detailed as a set of desired 
environment effects, e.g. to authorize sales, maintain accounts and print statements. These 
“tasks” are a qualitative measure of functionality. They can be decomposed further into sub-tasks 
of any detail. Functionality can be measured at the ordinal level by asking people to rate their 
satisfaction with these tasks, and at the interval level by the percentage of desired base functions 
the system supports [Hix and Schulman, 1991]. It is less obvious that the usability goal of Table 1 
can similarly be decomposed and measured, but as user rather than environment effects. For 
example, the “three click rule” (any task must be doable in three clicks) is a usability “task”. 
Gediga et al reduced 651 items from usability inventories to 90 items for the seven usability 
“principles” of ISO9241-10, like self-descriptiveness, and conformity to expectations [Gediga et 
al., 1999]. This goal decomposition allowed system experts to rate usability, giving scores that 
reliably and validly discriminated between systems [Gediga et al., 1999]. Just as one can develop 
a prototype user interface with no functionality, so usability can be rated independently of 
functionality. Naturally there is no usability without functionality, but equally unusable software 
effectively provides no functionality. The same logic applies to reliability, security and flexibility, as 
system failure, system attack, and environment change can render functionality null. The detail is 
beyond the scope of this paper, but the same approach, of decomposing goals, can be applied to 
the other WOSP dimensions of Table 1, giving cardinal measures (desired effects), ordinal 
measures (rating scales), or interval measures (summary scores). For example the TRUSTe 
trademark system is a qualitative rating of web site privacy [Benassi, 1999], and mean time 
between failure (MTBF) is an interval measure for reliability. The WOSP constructs are 
conceptually distinct, and so measurable.  

Combined measurements  
WOSP dimensions can be combined, e.g. Hix and Schulman found evaluators could rate the 
usability of various system functions (Figure 3). 

                  Usability 
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      Adapted from [Hix and Schulman, 1991] 

Figure 3. Usability by Functionality  
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Note that in combining the two dimensions, functionality is measured qualitatively, while usability 
is ordinal. If both were interval, one could divide them, as in the traditional performance metric for 
database performance, throughput (or workload) divided by cost or time per transaction, i.e. 
functionality divided by ease of action [Bitton et al., 1983]. Both measures are equally part of 
performance – to prefer one to the other is like taking the numerator of a fraction as more 
important than the denominator. The approach could be applied to other pairs, for example 
measuring openness relative to security, or connectivity against confidentiality. Equally Figure 3 
could show reliability against functionality, or rate the security risk of different extendibility 
operations. Measuring such intersections shows where meeting one requirement reduces 
another, an issue ignored when measuring performance aspects in isolation [Moreira et al., 
2002].  

Comparing Webs 
 If system aspects can be rated, then experts can compare systems in a common environment 
without developing common measures. For example, compared to DOS, the early Windows 
operating system seemed to have at least equal functionality but more usability (GUI interface), 
more flexibility (control panel), more extendibility (drivers), and more connectivity (network ability). 
Whether it was more secure, reliable, or confidential than DOS is debatable, but it seemed not 
markedly less so. The resulting Windows web of system performance overlays that of DOS 
completely (Figure 4), suggesting it performs better, and should replace DOS, given marketing 
and change management to overcome the inertia of an entrenched system.  
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Comparing electronic and paper communication systems however yields a different picture. E-
mail provides an electronic form with similar capabilities to paper, but better editing. Usability is 
also high in replying to a message, as the reply address, date sent, sender address, and sender 
title/text is added automatically, so a reply like “OK. Do it” costs literally only a few words of 
typing. Users perceive e-mail as more spontaneous than letter writing because it is easier to use 
[Lea, 1991, p169]. E-mail, like paper mail, can contain attachments. Security is a problem, 
because e-mail is easy to forge, and does not have the status of a signed legal document. Paper 
is also more reliable. It never “crashes” and seems more permanent, while network servers can 
fail and lose e-mail. Paper also seems more flexible - a note can be read almost anywhere, while 
e-mail requires an online computer to be read initially. E-mail’s lack of privacy is a concern, 
because e-mail is viewable by anyone with file access, whether a network supervisor or hacker. 

By contrast, postal messages have a covering envelope, which leaves visible signs if tampered 
with. As succinctly said “The e-mail of the PC is more deadly than the mail [postal]” [Neumann, 
2000]. President Bush’s 2001 decision not to use e-mail seems based on its lack of privacy. Yet 
e-mail offers extraordinary connectivity, e.g. Kiesler reported that a new idea posted on  

Figure 4. WOSP comparison of DOS and Windows 
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a computer network was directly sent to 300 colleagues in branches across the country, and in 
two days generated enough replies to launch a new project [Kiesler et al., 1984]. Figure 5 
summarizes these conclusions, showing e-mail with more functionality, usability, and 
connectivity, similar extendibility, but less reliability, flexibility, security, and confidentiality than 
letter mail. The e-mail web of performance only partially overlays that of paper communication, 
suggesting it will only partially replace it, as it has. For e-mail to replace paper entirely (i.e. the 
paperless office), the WOSP model suggests it must become more reliable, flexible, secure and 
confidential. These changes may already be happening. Computer network reliability is improving 
every year, pervasive wireless networks now allow anywhere access to e-mail via small portable 
systems, electronic bio-identity devices could make e-mail as secure as a written signature, and 
public encryption could provide a much needed privacy “envelope” for e-mail. But until electronic 
mail’s web of performance does expand, we can expect paper to remain in use.  

NEW TECHNOLOGY 
The WOSP model provides a useful framework for new technology. Wireless devices make 
people’s work more flexible (or environment independent), but other WOSP factors still apply. On 
a hardware level, cell phones can be more or less functional (voice message quality), usable 
(keys not too small), portable (easily carried), reliable (if dropped), secure (if stolen), extendable 
(earphones, phone covers), connected (to communication channels) and private (others cannot 
overhear conversations). On a software level, the same goals provide challenges for a ubiquitous 
computing application [Banavar and Berstein, 2002], which may have to work with different 
devices, in different networks and for different users, i.e. move seamlessly from one environment 
to another. It must be resilient to data entry errors, network unavailability, or device power failure, 
and recover graciously from them. The software must be scalable, to add support for new 
products, and secure to protect against virus attack. Lack of both standards and security are 
currently major obstacles to mobile wireless application development [Smith et al., 2002, p472]. 
Advancing in one area can cause problems in another, e.g. upgrading connectivity from one-to-
one 1G circuit switching to 2.5G “always on” packet switching created security problems. On 
cognitive and social levels, privacy may be the Achilles heel of mobile computing. Anyone can 
pick up broadcast wireless signals with the right equipment. Not just cell phones, but also home 
wireless networks, could be monitored. The issue is not just message content (as when reporters 
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overheard Princess Diana using her cell phone for a private meeting), but also message 
properties:  

“A key feature of these devices [wireless devices] is their ability to identify a user’s 
location, if the user is connected, and, in the future, who the user is.” [Smith et al., 
2002, p469].  

General Motor’s developed the OnStar system to provide navigation support for its cars. But who 
owns that information, which includes user identity, location, and time? Could it, for example, be 
subpoenaed in a messy divorce case? The potential privacy problems of mobile computing may 
challenge its effectiveness. In a social world, people do not want to live in glass houses. It is not 
an insoluble problem, because a system could be designed to not store personal data, and so 
avoid privacy issues. Balance implies that while success requires many causes, failure needs 
only one. The WOSP model is a useful checklist for weaknesses. 

IV. DISCUSSION 

THEORY INTEGRATION 
The WOSP model extends and integrates previous theories, including TAM, the general security 
model, and non-functional requirements research. 

TAM Theory 
The Technology Acceptance Model (TAM) proposes that perceived usefulness (functionality) and 
perceived ease of use (usability) affect the user decision to accept software [Davis, 1989]. The 
WOSP model extends TAM, by proposing that other factors, like reliability and security, also 
factor into user acceptance, i.e. that users base system acceptance on a general estimate of 
system performance. 

General Security Model 
The general security model developed in the context of a hostile environment [Jonsson, 1998], 
and “security” came to cover all properties that reduce the risk of failure and increase 
“survivability” [Lipson & Fisher, 2000]. The WOSP model suggests that to succeed in an 
environment, a system must thrive as well as survive, so survival is not equivalent to successful 
performance. Success requires systems also take opportunities, via functionality, extendibility, 
flexibility and connectivity. The WOSP model is thus also an extension of the general security 
model. 

Non-Functional/Quality Requirements  
Requirements like security and reliability are often considered “non-functional” requirements 
(NFRs). Though specified as functional requirements [Rosa et al., 2001], they are considered 
different because [Nixon, 1998, p132]: 

1. They can conflict with each other. 
2. Specification techniques are varied. 
3. Their impact is global. 
4. Their relevance varies from system to system. 

However these differences are not absolute.  

1. Goals like security can conflict with functionality, as well as other NFRs.  
2. Functional specification methods vary. 
3. A system’s functionality also impacts globally.  
4. While the relevance of NFRs varies among systems, the relevance of functionality 

also varies (relatively). Some systems contain more error code, or interface code, 
than functional code.  

The WOSP model does not distinguish “functional” from “non-functional”, but sees them all as 
“requirements” which modify one another. Their existence and interaction are considered system 
realities that must be addressed. Many software failures can be attributed to treating NFRs as “a 
second or even third class type of requirement … frequently neglected or forgotten.” [Cysneiros 
and Leita, 2002, p699]. All requirements should be considered from the beginning of software 
development, as the cost of adding them later increases rapidly with time. If performance is more 
than just functionality, the priority of performance goals should be assigned, not assumed. In 
dynamic, mixed opportunity/threat environments, like the word wide web, users want systems 
with functionality and usability, reliability and flexibility, security and extendibility, connectivity and 
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confidentiality, i.e. balanced systems. Anything less may tend to be less successful. The WOSP 
model integrates and extends a variety of NFR specialist research. 

Theory Expansion 
Each WOSP aspect of system performance is valid but incomplete. As a 1997 security review 
notes:  

“The face of security is changing. In the past, systems were often grouped into 
two broad categories: those that placed security above all other requirements, 
and those for which security was not a significant concern.” [Kienzle and Wulf, 
1997].  

If security must co-exist with system needs outside its specialty, one response is to broaden the 
concept. Perhaps integrity, reliability, availability, and confidentiality evolved as the global security 
concept grew. While this broadening fills a theoretical vacuum, it creates conceptual confusion, 
e.g. mechanisms that increase fault-tolerance (reliability) can actually reduce system security, 
which is illogical if reliability is an aspect of security [Jonsson, 1998]. While security could be part 
of a unifying “dependability” concept [Laprie and Costes, 1982], recent models reclaim the 
reliability/security distinction, as the first is based on provision of service, while the second is 
based on denial of service [Jonsson, 1998].  

Other specialties seem also subject to theoretical expansion. The usability measure of Gediga et 
al. [1999] includes “suitability for the task” and “error tolerance” as aspects of usability. Usability, 
like security before it, is in danger of becoming a confusing catch-all term for performance. A 
review of flexibility in IT management includes “scalability” and “connectivity” as potential aspects 
of flexibility [Knoll and Jarvenpaa, 1994, p6]. Again a specialist term is conceptually expanded to 
fill the theory space available. The WOSP model suggests it is better to retain modular 
constructs, but recognize their intersection. Security then is as much an aspect of reliability as 
reliability is of security, or reliability of usability. The unifying concept is system performance.  

The Technology Advance Cycle 
That performance is not uni-dimensional explains why progress is not uni-directional. Progress is 
not a train on a single set of railway tracks. Rather it seems on many tracks simultaneously, 
switching between them in unexpected ways. Hence neither the explosion of the Internet, nor the 
cell phone expansion was predicted by experts [Smith et al., 2002]. Berners-Lee’s World Wide 
Web project was rejected by CERN, the Hypertext community, and Microsoft, before becoming 
the way of the future [Berners-Lee, 2000]. But once new advances are recognized, suddenly only 
their benefits are seen, while the problems they will create are not [Standage, 1998]. Cars, first 
seen as avoiding pollution (from horse dung), are now major air polluters, an entirely unpredicted 
problem. Today’s computer hype also occurred with the telephone a hundred years ago. The 
most recent hype, mobile computing, is reminiscent of the multi-media hype of a decade ago. The 
promise that multi-media interaction will solve everything is being replaced by the promise that 
mobile computing will solve everything. The WOSP model supports neither expectation. Many 
who over-invested in bandwidth alone discovered to their cost that progress is not uni-
dimensional. More media power now seems like just the nearest hill on a journey. Four stages of 
technology advance seem to exist: 

1. Naivety: The advance is unexpected to current experts. 
2. Resistance: The advance is resisted by stakeholders unfamiliar with it. 
3. Hype: The advance is expected to change everything for the better.  
4. Realism: The advance “settles”, with both benefits and problems. 

The middle “uncertainty” stages of the cycle often involve considerable avoidable loss, either as 
opportunity loss from under-investing in progress (stage 2), or as risk from over-investing in hype 
(stage 3).  

The WOSP model suggests a realistic approach, minimizing stages 2 & 3.  

• Prior advances may not be the best guide to future benefit. Experts are, by the 
nature of things, experts in the past. In progress, we must expect the unexpected, 
for it is sure to occur in some form.  

• If developing one aspect can reduce others, there is no one “answer”, whose 
improvement will solve all problems.  
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Performance is always a balancing act, and advances seem like vitamin C - too much can be as 
much a problem as too little. The WOSP model is a realistic multi-attribute approach espousing 
balance. It encourages wiser system design, system evaluation, and system investment.  

REQUIREMENTS INTEGRATION.  
The issue of integrating performance requirements is still in its infancy. The WOSP model 
proposes multiple goals that pull system design in different directions. Fortunately the web is not 
rigid – it can be expanded, e.g. functionality is not the inevitable enemy of usability [Borenstein, 
1990], and Internet connectivity need not mean the end of privacy. What at first seems a zero-
sum allocation need not be so. But creating performance synergies by reconciling two or more 
performance dimensions almost always requires creative system design. The challenge of IS to 
devise creative ways to reconcile apparently contradictory performance goals, and genuinely 
expand the web of system performance.  

Flexibility and Reliability 
For example, how can a system be both flexible and reliable, both de-coupled/redundant and 
interactive/modular? A maximum reliability system would contain many duplicated parts, 
operating in parallel, with minimum interaction. Then if one part fails, the others can continue – 
performance degrades but does not collapse. Plants illustrate a reliability focus – many cells are 
equi-functional, with cellulose walls that prevent interaction, hence plants cannot get cancer (the 
cell walls prevent it spreading). However a maximum flexibility system would contain specialized 
non-redundant parts, so that changes in one place can alter the entire system. The human cortex 
seems designed for such flexibility, with massive interconnectivity, each neuron connecting to up 
to ten thousand others. Rather than storing memories in single locations, as hard drives do, the 
brain seems to store them in the part interconnections, so one memory involves many neurons, 
and one neuron is involved in many memories [Copeland, 1993]. Hence human memory never 
reports a “disk full” error. But while extraordinarily flexible, like a database indexed on every data 
field, human memory is not particularly reliable. Presumably natural selection preferred memory 
flexibility to reliability. But the brain in general is extraordinarily reliable. Most computers “hang” or 
malfunction at least once a month, while brains do so more rarely.  

EXAMPLE  

Consider the case of Phineas Gage, a railway worker. A flying iron rod smashed the 
middle and left lobes of his cerebrum. Within minutes he was conscious and speaking, and while 
showing disturbed behavior, lived for 13 years, and died of unknown causes [Copeland, 1993]. It 
is difficult to imagine pushing even a pin through a computer without total collapse.  

How can a brain, built from a thousand billion highly coupled and unreliable neurons, be more 
reliable than a computer with fewer, more reliable, components? One answer is its design, which 
overlays advanced flexible sub-systems over primitive reliable ones, like a plane that develops 
computer controls, but retains the “fail-safe” manual ones, in case the onboard computer crashes. 
In the brain, new sub-systems suppress old ones, but leave them intact (and available if the new 
ones fail). This “overlay it” contrasts with the usual “replace it” approach to software updates, and 
may be a better alternative [Meadows, 1997]. It increases both reliability and flexibility, because it 
provides two potential processing sources. For example, retaining a keyboard interface while 
adding a mouse interface seems inefficient, but it adds both flexibility (keys can be faster for 
experienced users) and reliability (keys can be used if the mouse fails). Operating systems are 
built in a layered fashion, and their reliability depends on their “kernel”. Hence for Microsoft to 
increase Windows reliability, it had to change its base layer from DOS to NT, at great cost.  

Modern error systems also illustrate sub-system layering. While early error code operated at the 
mainline functional level, it resulted in “spaghetti” code. It was found better to separate error code 
and functional code. Now an error control unit “calls” the main application, so if it fails, control 
“falls back” to error recovery routines. One problem with a master control unit is that it could also 
fail, causing the wholes system to fail, another is how to update it.  Multiple processing, however, 
raises subtle issues of how control is transferred. 

Specialization and Holism 
System evolution seems to require both greater part specialization and greater interaction among 
parts. A system’s differentiation is the degree of difference between its constituent parts, e.g. in 
embryonic development, each cell begins as equivalent - any cell can develop any function. As 
the body develops, cells specialize into different forms and functions (hair cell, blood cell, brain 
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cell, etc). Likewise in simple social groups, most members can perform most functions, but as 
societies evolve the division of labor increases. [Wright, 2001]. As systems advance, their parts 
become more specialized, but more specialization means more complex part interaction. 
Therefore, advanced systems tend to be “holistic”. Holism is how much changing one system part 
changes the properties of others [Bertalanffy, 1968]. Holistic system parts may gain key 
properties only when in relation to others [Esfeld, 1998]. Thus most biological sub-systems 
behave differently when isolated than when within a body [Bertalanffy, 1968, p68]. In holistic 
systems, a small change can cascade, creatively or catastrophically, giving what chaos theory 
colorfully calls the “butterfly effect” (“The flap of a butterfly’s wings in Brazil can cause a tornado 
in Texas”) [Gleick, 1987]. Since changing any part, even slightly, can change the whole 
drastically, holistic systems are individualistic [Bertalanffy, 1968]; for example, one rarely finds 
two people who look exactly the same. Complex programs, like the Windows operating system, 
are becoming more holistic, e.g. small differences can have cascading effects that make each 
user’s Windows installation different. Ignoring holism in technology design gives what Tenner 
calls the “Frankenstein effect” – a cause of low system performance [Tenner, 1997]2. The issue of 
managing both more specialization and more internal interaction resolves into one of transfer of 
control, of what sub-system should act when. Natural selection has created an unexpected 
solution: autonomy. 

Autonomy  
For a system to advance, its parts must specialize, which means only they know what they do, 
and hence when to act. If a master control mechanism directs action, specialty knowledge must 
be duplicated in the control mechanism, which defeats the point of specialization. For 
specialization benefits to be realized, system parts need autonomy, the ability to direct their own 
actions. This principle applies to societies, where specialized workers are more productive if 
given freedom. It also seems to apply to software. While early software used a single main 
control module to direct all actions, object orientated systems (OOS) grant “objects” limited 
autonomy to initiate interactions by messages to other objects. It distributes rather than 
centralizes control. Computer system part autonomy is increasing, e.g. screens that turn 
themselves off, printers that perform self-maintenance as required, and operating systems that 
decide to check the hard drive if you shut down incorrectly. Systems designed following the 
principle of autonomy would not contain a master control center. Each part would act according to 
its nature, and system actions would arise from the part interaction. The human brain seems to 
work in this fashion, as a collection of sub-systems with no CPU [Whitworth, 1975]. For example, 
“split-brain” studies show that the highest level of brain operation (the cortical hemisphere) is 
duplicated, and each hemisphere can operate autonomously, as a “brain” in itself [Sperry and 
Gazzaniga, 1967]. Autonomy seems the key to advanced system development. IBM is exploring 
how increasing autonomy can improve IS performance [Mowbray, 2002].  

Final Comment  
In designing systems to satisfy multiple purposes, nature seems an excellent guide, and we 
ourselves a good example Our imperfection on any single scale is as manifest as our success 
overall. Naïve ideas of linear progress must be abandoned for a realistic view of disparate system 
goals in design tension in a changing environment. The goal of advanced systems requires 
balance, and advocates of single point “excellence”, whether it be reliability, privacy, security  or 
any other, should recognize each other. The situation we are in is ironic, being ourselves 
advanced biological systems, with millions of years of system development, trying to create 
advanced computer systems. To do so we must understand the general requirements of 
advanced systems. It is a rare system that comprehends the principles of its own design. 
However, since the systems we create must work with the systems we are, based on the same 
world, the best guide to advanced computer system design may be ourselves.  
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