THE BRAIN AND TECHNOLOGY

Brain science in interface design

LESSON 2. CONTEXT

Brian Whitworth, BA (Psych), BSc (Maths), MA (Psych), PhD (IS), Major (Retd.) With illustrations by Jasmin Whitworth

This open-source document thanks Wikipedia, Flickr and other places where people put pictures in the public domain for community use.

CONTEXT

"When I use a word," Humpty Dumpty said in rather a scornful tone, "it means just what I choose it to mean – neither more nor less."

"The question is," said Alice, "whether you can make words mean so many different things."

"The question is," said Humpty Dumpty, "which is to be master – that's all." (Through the Looking Glass, Chapter 6)

Context is what **contains** current processing

PART 1: THE PARALLEL ADVANTAGE

Ali Baba is in one of forty jars; how best to find him?

- **Sequential**: A fast slave checks jar 1 then jar 2.
- **Parallel**: 40 slow slaves check each jar.

The computer:

- Has a "parallel" port that has only 25 lines at once.
- Is sequentially fast but minimally parallel.

The brain:

- Has an optic nerve that has over a million lines at once.
- Is sequentially slow but massively parallel.

SLOW NEURONS - FAST RESPONSES

- **Computers** are very fast at processing instructions in **sequence**—i.e., one at a time.
 - Computer events take about a billionth of a second.
- Brains are much slower but process many instructions at once: i.e., are massively parallel.
 - A neuron takes about a thousandth of a second to fire: i.e., is **much slower**.
- People recognize faces in about 1/10th of a second.
 - A brain processing sequentially would have to do face recognition in 100 lines of code!!

BROAD VS. DEEP PROCESSING

A processing structure can be:

- **Broad**: Wide base with few vertical levels
- **Deep**: Narrow base but with many vertical levels
- **Trade-off**: More input processed less or less input processed more

Specialization allows broad and deep:

- The LH does deep, e.g., language.
- The RH does broad, e.g., spatial.

BROAD AND DEEP PROCESSING

Vision does both:

- **Peripheral vision** processes the entire visual field at a low level.
- Foveal vision processes 2-3% of the visual field in detail.

Broad processing

Deep processing

PERIPHERAL SENSES

The cocktail party phenomenon:

We **hear** things from conversations we are not (apparently) listening to.

Everything is processed – to some degree.

Pre-conscious analyzers can direct attention

RADAR: WIDE AND DEEP

Radar early-warning systems involve:

- **Detection** of **all** events in a wide area of space and track movement.
 - Simple processing of a wide area.
- **Recognition focus** to identify if it is a friend or foe.
 - Deep processing of a selected target.

Both are necessary:

- 1. **Broad**: Locate potential targets over a wide area.
- 2. **Deep**: Identify found targets.

VISUAL EARLY-WARNING SYSTEM

Involves:

- Detection. Peripheral vision
 - Analyzes the entire visual field for edges.
- Recognition. Foveal vision
 - Recognizes any potential objects.
 - Foveal vision only does 2-3%.

Peripheral vision is all-round awareness of the **entire** visual field.

- Only works if we listen to it.
- **Shuts off** if we focus attention, e.g., use a cell phone in a car.
- Activates if we look nowhere special, so when driving, look many cars ahead.

VISUAL STREAMS

Two distinct visual processing streams are:

- **Location**: Where something is position, distance, orientation and movement (broad)
- **Recognition**: What something is, including color, texture, contour, shape (deep)

They are **different**, so we can:

- Know something is coming but not what.
- Recognize a thing, but not how close it is, e.g. car headlights at night

Key website cues:

- Location: Where are things? Cues include grouping, perspective, shadows and orientation.
- **Recognition: What are they?** Cues include shape, color, texture, size, grouping, distance, key features.

PART 2. THE SENSES

The brain has more than 5 senses, and information flows down as well as up.

SEVEN SENSES?

- 1. Vision: Screen
- 2. Hearing: Speakers
- 3. Touch: Mouse, keyboard
 - Feel: Joystick
 - Pressure: Control glove
 - Temperature: Real hot keys?
 - Pain: Shock feedback
- 4. Smell: Scratch-n-sniff screen?
- 5. Taste: Screen licks?
- 6. Vestibular (balance): Chair tilt
- 7. Kinesthetic (movement): Vibra-chairs—movie seats that move

Each sense channel has its own analysis hierarchy.

REALISM

Aristotle's realism: We see the world <u>as</u> it is

- Perception is **defined** by sense input (determinism).
- We perceive the physical world because we **reflect** what is outside.
- Outside is **duplicated** in our brains.
 - To people in the Middle Ages, the eye had to make white to see white.

The brain **reflects physical reality** as a mirror does by somehow copying it.

WE REFLECT THE WORLD?

CONSTRUCTIVISM

Plato's idealism held that we construct the world out there by interacting with it:

- Perception is not defined by sense input but by **ideal forms** the mind recognizes in reality.
- Brain **constructs** the world we see by processing.
- Each person sees **A** world, not **THE** world.
- Hence we can see **hallucinations** and have dreams that are not based on physical senses.
- Hence we can recognize **abstract** things such as love and three-ness that don't physically exist.
- Hence we can **imagine** what doesn't exist, e.g., unicorns.
- Each person **constructs** his/her own reality.

From Raphael's **The School of Athens** (1509-1511), depicting Plato (left) and Aristotle (right)

Each person constructs his or her own reality.

AND SCIENCE SAYS

Psychology:

- We **construct** language; we don't deduce it (Chomsky).
- We reduce reality.
 - See less than 1% of the electromagnetic spectrum
- **Perception**: the Brain's **best guess** of what is "out there".

Neuropsychology:

• Redness depends on our retinal receptors.

Philosophy:

• Kant: We see phenomena, not the noumena (the world as it is).

We see

Bees see

No part of the electromagnetic spectrum is objectively red.

SIGNAL

Signal: Any **physical** change, representing an **information value**, that can be distinguished from background noise

- Noise: changes not caused by the signal
 - There is never no background noise.
- Signal: a value distinct from background noise
- **Threshold**: the level at which a signal separates from the background noise

To improve a signal:

- Increase signal strength.
- Reduce **background** noise (irrelevant change).
 - Filter out noise.
- Reduce **competing** signals.

There is always background noise

THRESHOLD

Time

- **Threshold** is the signal value necessary to be recognized as not being the background noise.
- A signal must be above the threshold to be perceived.

IS ANYTHING THERE?

Vision: A candle at 30 miles

• The theoretical limit of a quantum of light!

Hearing: A watch ticking at 20 ft.

• The theoretical limit of random motion of air molecules!

Taste: A teaspoon of sugar in 2 gallons of water.

Smell: A drop of perfume in a 6-room apartment.

Touch: A fly's wing falling on a cheek from 1 cm.

Eagles see further, bats hear better, dogs sense fainter smells... Robins navigate by sensing the earth's magnetic field inclination!

People perceive what eyes and ears cannot!

THE VOLUME EFFECT

Young children

 Everyone talks at once, so they must yell to be heard – a stressful background.

Adults

- Speak in turn, so they can talk normally.
 Sharing attention vs. competing for it
- Signal volume needed depends on noise.

Information environment:

- Noisy environments hurt every signal.
- Not sustainable
- The background should not compete with the signal

A noisy background competes.

PART 3. ENCODING

Information: Depends on the number of signal value options:

- Two choices = 1 bit
- 256 choices = 1 byte, etc.

Encoding: How the signal links to the information

- Binary encoding: On or Off signal is 1 bit.
- ASCII : An eight-bit code for one-byte letters
- Language: a form of higher encoding

By different encoding, the same on signal can be:

- One or zero (a bit).
- The first letter, 'A' (a byte).
- The first word, **aardvark** (many bytes).
- The first book the Zend-Avesta?

The same signal can carry varying information!

- **Hieroglyphics**: carry no information if we can't decode them!
- Data compression stores more information in the same physical signal by better encoding!

Information is encoded!

More choices more information

ENCODING SCHEME

Better encoding: Same information for less bits

- A picture can be encoded as a:
 - Bitmap (BMP) pixel based.
 - Compressed bitmap (GIF).
 - Line-based image (JPEG).
 - PNG (Portable Network Graphics format).
 - JPEG is better for CAD work.
 - Bitmaps are better for non-linear graphics.
 - **Vector** formats (e.g., pdf) store squares more efficiently than **raster** formats, such as gif, do.
 - Pick an **encoding scheme** for your purpose
- All the languages of the world are just encoding schemes.

GRAPHICAL ENCODING

Symbols: Graphics whose meanings are understood in every nation

DECODING

Decoding: Turning a signal back into meaning **Decoding time** increases with **the number of options**.

- 7 is one of **ten** numbers.
- F is one of **26** letters. **Longer time to recognize**
- A word is among **millions**.

People recognize numbers faster than they do letters.

 "50% Off "is easier to read than "Half Price" or "Two for One"

Questions: Having fewer options means less decoding and a faster response.

- **Default:** Indicate the likely choice option.
 - Helps: If based on my usual choices
 - **Hinders**: If based on what **you** (the business) wants?
- Bad premade choices make for more cognitive work: e.g., Install McAffee

Many options is more brain work.

Information is exchanged by encoding and decoding.

THE THIRD OPTION

Computers reduce choices to **binary** bits, but there are always at least **three** choices in any **life** situation.

- Left, right or stay do nothing is a choice!
- Agree, disagree or ignore
- <u>Victor Frankl</u> on life in a Nazi concentration camp:
 - Submit and help the guards.
 - Fight and be killed.
 - Transcend and refuse the pain.
 - **His conclusion**: There is always a choice.

The two main choices are obvious; the third is contextual.

- Vote: Yes, No and
 - Don't know: No knowledge on this issue
 - Abstain: On record as not voting on this
 - **Refuse to vote:** Wrong question or wrong options

Victor Frankl

Look for the third option, in design and use.

WHO CONTROLS THE CHOICES?

The choices control the outcome.

- Power to define the **question**.
 - When did you first start hating Stalin?
- Power to define the **options**.
 - Power **reduces life** to binary choices.
 - Hitler: Us vs. them, cf. EU political unification
 - ISIL: Islam vs. the West, cf. religious unification
- Power to <u>deny</u> third choices.
 - Abstain, Don't Know, Discuss, The right to silence
- Software: The new power tool?
- Every question needs a close window option.
 - For software that doesn't, use Task Manager.
- Good software gives **three** choices:
 - Allow cookies, Deny cookies, Let me choose.
 - Mozilla just dropped the option to be easier? Smartphones just allow all cookies.

Suggestion	Praise	Problem	S Question	
ake a suggestion! H	low can this article b	e improved?		
nation you sake to trans	narancy under these terms			2

TERMINOLOGY (1)

- Information
 - Base 2: Log of the number of physical options
 - A choice from on/off is one bit.
 - No choice is zero bits.
 - 1 Byte is eight bits.
- **Processing** Changing an information value
- **Channel** An information stream
- **Bandwidth** Channel's information capacity
- Instruction Tells a processor what to do
- **Control** How the next instruction is decided
- **Encoding** Turn information into a physical signal
- **Decoding** Turn a signal into information

TERMINOLOGY (2)

- Information overload: Too much information to process it all fully
- Boredom: Not enough information to occupy the brain
- Sensory channel: Vision, hearing, smell...
- Analyzer: Neural assembly that processes selected input to generate an output
- **Output**: Can affect muscles, organs, hormones or, more often, other analyzers
- Habituation: Reduced response to a signal that constantly repeats

TERMINOLOGY (3)

- Attention: How the brain manages processing control
 - Expectancy Downward attention control
 - Distraction Upward attention control
- Consciousness: The brain observer (Buddhism)
 - Information sink: Where information goes
 - Information **source**: Where choice comes from
- **Meaning**: Information plus consciousness
 - The brain converts **information** to **meaning**
 - Semantic web occurs when people interpret data.

PART 4. BORDERS

In sunlight

• 1-5 million cones mainly in the fovea give **color vision**.

In dim light, they don't work

- So, **100 million rods** take over.
- Black/white was the first visual process.
- We are initially blind in sudden darkness because daylight bleached the rods.
- The rods make a light-sensitive chemical after about twenty minutes to give night vision.

The eye camera has **two types of film**:

- **Cones**: For daylight vision
- Rods: For night vision

Rods and cones are types of photosensitive cells in the retina.

THE FIRST STEP IN VISION

- The retina is actually a part of the brain

 the brain grows out to form it
- In its visual processing—
 - One type of retinal cell (1) responds to light increases above background level
 - Another type of retinal cell (2) responds to light increases below background level.

BOUNDARY AMPLIFICATION

- Retinal cells interact laterally to amplify each other.
- The result is **boundary or edge** amplification.
- An edge is where light turns to dark.

Boundaries underlie all object recognition.

BLURRING TEXT

- Blurring text by shadow or embossing reduces readability.
- If you **must** do it, **compensate** by:
 - A larger font
 - Fewer words
 - Shorter words
 - Sans-serif fonts
 - Enhanced color contrast
 - Enhanced boundaries
- Blurring **backgrounds** is good!

Hard to read!

Harder to read

Still hard to read

Font Arial, not TNR, larger, three, not five words, black contrast

VISUAL BASICS

The first step of visual processing that occurs at the retinal level is to identify border contrasts.

• **Borders** are critical to all higher visual processing—e.g., shape recognition.

They easily convey important information.

- Progress bars: How much done
- Scroll bars: There is more below

Border changes always draw attention:

- Outline objects needing action
- Frame important pictures

ENHANCE BOUNDARIES

Boundary enhancement always helps.

• Especially for small or unfamiliar figures

Best practice

- Thicken shape contour outlines.
- Increase all border contrasts.
- Use color, texture or saturation to increase contrast.

Boundaries are the basis of all shapes.

Boundaries stand out

OTHER ANALYZERS

- Each square mm of the visual cortex contains about a quarter of a million cells.
- It has simple, complex, and hyper-complex layers.
- Different cells do different analyses.
 E.g., some cells only respond to certain angles.

PART 5. CONTEXT

- **Context:** The assumed background—e.g.:
 - Visual context: Background graphic
 - Information context: Encoding scheme
 - Thought context: Mathematical axioms and assumptions
- Lower processing is *contextual* to higher processing, and the brain is processing upon processing
 - E.g., figure ground assumptions
 - Is there anything in yours?
- But higher processing airbrushes the result.
 - Lower processing is affected by higher **biases**.

(its mail box!)

The wall context is assumed.

CONTEXT IS A CHOICE

THE CONTEXT ADVANTAGE

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be a total mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe!

There actually was no such research, but the example shows how

- Word shape, a context, helps word meaning.
- We scan the first and last letters (anchoring).

Information overload **requires the brain** to use **context** (prior processing) to guide **attention** (current processing)

Without a common encoding scheme, no meaning is exchanged.

Cie How 4r3 you doine, c Justin Bieber is the he's only twelve.	45703 people to 13v3rb07. kid singer who sa	ays he's fifteen but	
			wikiHow

THE CONTEXT DISADVANTAGE

Impossible figures occur when context assumptions fail or contradict.

- Two square prongs or three round?
- Impossible fence posts!
- Walking up forever?

BOTTOM-UP PROCESSING

Upward control: Visual cortex processes **upward**, as lower analyzers pass data to higher ones

- Simple→ complex→ hyper-complex cells
- So, lower effects can accumulate errors.
 - Is that a square you see?

But there are also:

- Lateral effects: Same-level analyzers enhance or inhibit each other.
 - E.g., to enhance borders
- **Downward effects**: **More** nerves project from the visual cortex to the lateral geniculate than vice versa!
- This system alters its own input!

Yes it is square!

TOP-DOWN PROCESSING

James Gibson's 1966 theory proposed that perception involved mainly bottom-up processing.

Richard Gregory in 1970 argued that perception is a constructive process based on **top-down processing**.

 See the discussion at <u>http://www.simplypsychology.org/perception-</u> <u>theories.html</u>

Perception is a **top-bottom negotiation** between:

- **Naivety**: Seeing what is, however silly
 - The Emperor's New Clothes: Only the child saw it.
 - Honest children are socially naïve.
- **Bias**: Seeing what is expected or **should** be there
 - Doing what people above expect is social corruption.
 - Whistleblowers reveal corruption.

BIAS IS PRIMING

Bias is when a prior processing **context** predisposes a certain **perception**—e.g., bearded men are bigger. **Words create sentences, right?**

• Computers that process one way (input to output) analyze letters to words to sentences.

The brain works both up and down so:

- Word analysis suggests sentences.
- The likely sentence then alters the words to fit!
 - The sentence also creates the words!

Bias is a problem for science, but **priming** the brain based on **context** is necessary to handle life:

- Hit me in blackjack
- Hit me in boxing

Now read it again

PART 6. ENVIRONMENTS

Environments contain and sustain entities (people and things).

- **Physical**: Time, space, light, air, ocean, weather
- Informational: Linux, Windows, Java, game worlds, Internet, WWW
- Social: Nations, communities, work places

Environments are generally ignored - Fish don't see the water; birds don't see the air, and people don't see social environments – **until they fail.**

- **Physical environments**: Pollution of air, rivers and lakes. **Climate change** is the Earth adjusting our physical environment.
- Information environments:
 - **Money:** Is just information a currency can collapse.
 - **Great depression:** A whole *e*conomic environment failed.
- **Social environments** can also "collapse" by crime and corruption.
 - Toxic work environments: Harass and bully workers.
 - A toxic Internet: Would be full of lies, hate and deceit

West of Delhi

VISUAL ENVIRONMENTS

Recall that visual processing depends on:

- **Signal power** (frequency, strength...)
- **Noise** (background power)
- Receptor type (cone vs. rod)
- **History** (e.g., habituation)
- Contrast (borders)
- **Context** (bias or priming)

A visual **background** is the environment that **contains** whatever we are looking at.

It is as **important as the signal** in creating an effect.

British Museum environment

VISUAL ENVIRONMENTS

Perception is signal **and** background, so choose a **background** that **supports the signal**:

- **Dark** foregrounds need **light** backgrounds.
- Light foregrounds need dark backgrounds.
- **Fuzzy** backgrounds make a signal clearer.
- Sharp backgrounds compete with the signal.
- Backgrounds can have backgrounds ...

People don't usually **click** on backgrounds because they ignore them.

- Right-clicking on a background to change it works.
- Right-click an empty screen to change its picture.
- Right-clicking on Toolbar changes its properties.

Which game do you like?

SOCIAL ENVIRONMENTS

We are now building social environments online

• Facebook, E-Bay and Wikipedia are **socio-technical environments** based on hardware and software.

They work the same as **socio-physical** environments.

- **People migrate** out of negative environments:
 - The EU refugee migration is an example.
 - It's much easier to "migrate" online.
- The online social culture caused the **Arab spring**.
- Socio-technical gap
 - Between what the technology does and what people want
 - Technology needs to recognize **social requirements**, like fairness, transparency, trust, privacy and freedom.

Leaving an environment hurts

NEGATIVE & POSITIVE ENVIRONMENTS

Negative social environments are:

- **Negatively driven**: Mistakes are punished, success ignored.
- **Corrupt**: Who you know, not what you know.
- **Bureaucratic**: Focused on rules rather than results.
- **Chaotic**: Cheats, thieves, liars and bullies thrive.
- Secretive: No-one knows what is going on.
- **Image focused**: Focus on appearances not performance.

Positive online social environments are:

- **Positively driven**: Reward good acts so creative people stay.
- Impartial: Treat inhabitants equally.
- **Free**: Allow individuals choices—e.g., open source.
- **Fair**: You reap as you sow.
- **Transparent**: People see the governance—e.g., Wikipedia.
- **Production focus**: Generate new things—product orientated.

PERSONAL CONTEXTS

Every message has a sender context:

• Who sent this is the message context.

Every **act** has a **purpose** context. If you **set a cookie**:

- Who are you? (do I trust you?)
- Why are you setting this cookie?
- What are the consequences for me?
 - Trust me; I know what I am doing?
 - Lightbeam reveals cookie links.
 - People won't trust selfish software.
 - An Internet without trust is **socially dead**.

The Wolf and the seven young kids

Lightbeam

TRANSPARENCY

Site/app visitors want to know your contexts:

- Personal: Who are you? (give a photo), What is your past? (offer a bio)
- **Social**: What **groups** do you belong to? (country, culture, religion)
- Motivational: What is your purpose? (tell it up front)
- **Financial**: Who is funding this?

Transparency lets people leave or stay faster

- Door sellers who won't say what they are selling!
- Cookies that don't say why: Why does the American Journal of Psychology set 23 cookies when I visit?
- Do apps observe secretly, record secretly, and upload secretly?
- Should I cover my laptop camera, or close it in my bedroom?
- Can I trust my smartphone for online banking?

Why all the cookies?

PART 7. DESIGNER NOTES: CONTEXT

Border contrast

- The biggest thing screen designers forget: white space. **Repetitive background**
- Wallpapers are good backgrounds because they repeat. **Use depth**
 - Adding depth gives 3 dimensions, a feeling of space.

Blurring

• Make crowd faces fuzzy, blur text & colors, do motion blur.

Mood

• Use background to set emotional context, e.g., color.

Avoid distraction

• Avoid things such as people, faces, events and text that distract.

Backgrounds of backgrounds

• The same principles apply.

The same rules apply to:

- Sound backgrounds (Muzak)
- Social backgrounds (Culture)

BORDER CONTRAST

REPETITIVE BACKGROUND

ADD DEPTH

y Home About

Language: English +

Welcome to Twitter.

Connect with your friends — and other fascinating people. Get in-the-moment updates on the things that interest you. And watch events unfold, in real time, from every angle.

While taking sunset photos of Manila Bay, a free-spirited girl sits down and brings out beer to enjoy the view.

Tweet and photo by @betinalibre 10:37 PM - 12 Nov 2014

Password Log in Remember me - Forgot password? New to Twitter? Sign up Full name Email Password	roome, eroan or commune	
Remember me - Forgot password? New to Twitter? Sign up Full name Email Password	Password	Log in
New to Twitter? Sign up Full name Email Password	Remember me - Forgot passwo	rd?
Full name Email Password	New to Twitter? Sign up	
Email Password	Full name	
Password	Email	
	Password	

About Help Blog Status Jobs Terms Privacy Cookies Adsinfo Brand Advertise Businesses Media Developers Directory @ 2016 Twitter

BLURRING

BACKGROUND MOOD

DON'T DISTRACT

BACKGROUNDS TO BACKGROUNDS

William Blake's Ancient of Days