
258 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

THE WOSP MODEL: BALANCED INFORMATION
SYSTEM DESIGN AND EVALUATION

BRIAN WHITWORTH
MICHAEL ZAIC
Department Of Information Systems
New Jersey Institute Of Technology
 bwhitworth@acm.org

ABSTRACT

IS researchers may wonder why computing advances often confound expectations. The leisure
society, the paperless office, and programmer decline are just a few predictions that didn’t
happen. If current expectations are to be any more accurate, we must learn from experience. As
we create e-systems to rival ourselves, and networks to match society, the problem may be a
limited view of system performance. The Technology Acceptance Model (TAM) sees performance
as functionality plus usability. The Web Of System Performance (WOSP) model presented in this
paper extends TAM to include other requirements common in performance research literature.
WOSP is a theoretical framework for the balanced design and evaluation of advanced information
systems, as now being created on the Internet and elsewhere. It analyses performance via four
fundamental system elements: boundary, internal structure, effectors and receptors. Each can be
designed for opportunity or risk, giving eight performance goals, whose design tension comprises
a “web” of performance. It explains why advances sometimes “bite back”, and need creative
system requirements integration. The theory applies to hardware, software, cognitive, or social
system levels, but as each level is a different “world”, it cannot be instantiated across levels. The
WOSP model should interest those designing or evaluating advanced software systems.

KEYWORDS: system performance, functionality, usability, reliability, security, flexibility,
extendibility, connectivity, confidentiality, privacy, openness, non-functional requirements,
qualitative requirements, technology acceptance model, TAM

INTRODUCTION

We all like to crystal ball gaze. After all, if we knew where the future was going to be, we could be
there when it arrived, as “fore-warned is fore-armed”. It seems sensible to divine the future from
the trends of the present. Yet often in computing, expected trends do not occur, or at least not in
the way expected. For example, over twenty years ago it was predicted that paper would soon be
dead, replaced by an electronic “paperless office” [Toffler, 1989]. Today, despite the electronic
revolution, paper is alive and well. Due to electronic communication, more paper is being
produced than ever before, not less.

Shortly after Toffler’s forecast, a New Zealand company wrote an application generator called
“The Last One”, claiming, as its name implies, to be the last program that programmer’s would
write. They followed James Martin, the guru of programmerless programming, who predicted that
users would generate applications, making programmers redundant. Many of us then agreed that
perhaps programming was a dying art - but it never happened. The demand for programmers has
never faltered, and today is still rising. As Software Development notes: “What happened to the

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 259

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

promise of programming without programmers?” [Keuffel, 2001]. User application generation
gave more, not less, programmer work. Possibly the earliest prediction failure was the “leisure
society”, that was to arise as machines took over human work. The reality is that modern workers
are busier, and more stressed, than ever before [Schor, 1991].

Why did these expectations, and many others like them, miss the mark? How can the informed
opinion of the day be so wrong? More important, are we repeating the same errors today? If so,
what is the cause? The story of blind men describing an elephant seems to summarize the
problem – one grabbed its tail and declared it like a rope and bendy, one took a leg and said it
was like a pillar and fixed, one felt an ear and thought it like a rug and floppy, while yet another,
holding the trunk, said it was like pipe, and very strong [Sanai, 1968]. The focus varied with the
viewer, but no-one saw the elephant. We propose that the “elephant” confounding our predictions
is an advanced system [Casti, 1997], and our error is to analyze system aspects in isolation. If all
remained fixed except work production, computers might have created a leisure society. But they
changed the whole of society, not just work, so the effect was not as predicted. Equally,
computers altered application development as a whole, and again the total effect denied the local
prediction of programmers becoming extinct. We propose a simple principle: To design and
evaluate an advanced information system it must be viewed “in toto”.

A simple tool’s performance is mainly its functionality, but software is no longer a simple tool.
Software performance now involves multiple aspects that may contradict [Alter, 1999]. Over a
decade ago, Goodwin argued that if people find software unusable, it performs poorly [Goodwin,
1987]. The Technology Acceptance Model (TAM) proposes that both usefulness (functionality)
and ease of use (usability) affect user acceptance based on perceived software performance
[Davis, 1989]. But are functionality (what a system does), and usability (how it does it), the sum
total of performance? For example, security seems also important [OECD, 1996]. On the World
Wide Web, scalability seems equally important [Berners-Lee, 2000]. Alter adds reliability,
responsiveness, and conformance to standards to the list [Alter, 1999]. Non-functional IS
requirements can be system critical [Nixon, 1998], but what they are and how they interact is
unclear. Yet awareness of the range of demands on software design is increasing. Usability is a
movement in its own right [Nielsen, 1993]. A study by Department of Commerce's National
Institute of Standards and Technology estimated that software errors cost the U.S. economy
$59.5 billion annually [NIST, 2002]. The success of the web has led to a world wide effort in open
standards [Gargaro et al., 1993]. Adaptive middleware is now considered a key ingredient for a
new generation of open, flexible and connected web software [Agha, 2002]. This paper extends
the TAM duality into a multi-attribute model of performance, representing the variety and
complexity of software today.

A SYSTEMS APPROACH TO SOFTWARE PERFORMANCE
Over thirty years ago Bertalanffy was struck by the surprising isomorphies of concepts, laws, and
models, in various fields like physics, biology, psychology, sociology and chemistry [Bertalanffy,
1968]. For example, the first author derived a formula for social disagreement [Whitworth and
Felton, 1999] of the same form as one for ecological diversity in biological habitats [Pielou, 1969].
General systems theory proposes such commonalities arise from the nature of systems, and we
now consider system performance in this sense.

PERFORMANCE AS THE SYSTEM-ENVIRONMENT INTERACTION
If every system exists in an environment, its performance can be defined.

Performance
A system’s performance is defined as:

 How successfully it interacts with its environment,

especially that it continues to interact with the environment. If users do not use an information
system, it fails as a product, and we say it did not perform well. So performance depends on
whatever affects the system-environment interaction.

World
To interact with its environment, a system must be of the same type. It must exist in a given type
of “world” that defines its nature as the nature of that world. Examples are the physical world, the
world of information, and the social world, giving physical systems, information systems and

260 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

social systems. To define system performance, a world type must first be defined. This axiom is
basic to a systems approach.

Environment
The environment is that around a system which interacts with it. What “succeeds” in a system-
environment interaction depends on how the environment responds. In Darwinian evolution, the
environment determines what adaptations “work”, i.e. perform well. System performance is thus
relative to the environment, not absolute. Three things seem relevant:

• the number of opportunities,

• the number of threats, and

• the rate these change.

In an opportunistic environment, right action can lead to great benefit. In a risky environment,
wrong action can lead to great loss. In a turbulent environment, risk and opportunity change
quickly. An environment can be any combination, e.g. it could be opportunistic, risky, and
turbulent.

Reproduction
Every system must somehow be created. Software systems are built, while organic systems are
born, but both creations involve cost or effort. Reproductive systems can create other systems
like themselves – one system operation is creation (i.e. reproduction). The issue of reproduction
is outside our scope as, other than small virus programs, few computer systems reproduce.

FOUR ELEMENTS OF SYSTEM PERFORMANCE
To interact with an environment requires four basic system elements.

Boundary
If it exists in some world, a system must separate what is system from what is not. It needs a
boundary to divide itself from its surroundings, e.g. a social community’s boundary defines who is
and is not in that community. The first element affecting a system’s interaction with its
environment is its boundary.

Internal Structure
Given a system existing within a boundary, either it is one indivisible thing (as the atom was once
thought to be), or it contains constituent parts [Esfeld, 1998]. How these parts form and interact to
give system activity, the system’s internal structure, is the second proposed element affecting
system performance.

Effectors/Receptors

Any system interacts with its environment in a feedback loop over time. Feedback favors some
parts specializing in acting upon the environment (effectors), while others specialize in gathering
environment information (receptors). For example, we have eyes and ears to sense the
environment, and hands and feet to act upon it.

EXAMPLE

A cell, the simplest biological system, began by forming a boundary (the cell membrane) [Alberts
et al., 1994]. While simple procaryote cells are internally undifferentiated, distinct organelles soon
appear with different cell functions, and complex chemical control mechanisms evolve to manage
and support the system (e.g. the nucleus). An amoeba has no specialized parts for acting and
sensing, but simple eucaryotic cells like Giardia have flagella (effectors), which act to move it
about, and complex cells like protozoa include light sensitive photo-receptors. We ourselves,
though highly advanced, still have a skin boundary, senses to receive input, muscles to act
externally, and structured internal sub-systems to manage and support.

We suggest four basic system elements:

1. Boundary: To separate the system from its environment.
2. Internal structure: To support and coordinate system activity.
3. Effectors: To act upon the environment.
4. Receptors: To analyze environment information.

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 261

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

SYSTEM LEVELS
Computer systems are recognized as systems in the general sense [Churchman, 1979]. At the
lowest level, as hardware, a computer is a mechanical system with a physical boundary (its
casing), an internal architecture, keyboard and mouse “receptors”, and printer and screen
“effectors”. But a computer is not only chips and circuits, it is also a software system with a
boundary separating system from non-system memory, across which input/output data enter and
leave the system. Software contains an internal structure, with parts calling and comprising
others in complex ways. Some subroutines process input, like biological receptors, while driver
programs, like biological effectors, act on the system’s environment.

Hardware and software systems together are often called information technology (IT), but higher
system levels exist [Boulding, 1956], as “the system” can also be the human-computer
combination [Alter, 1999; Littlewood et al., 1993], e.g. a plane is a mechanical system, but the
plane plus the pilot is also a system. This combination is the basis of human-factors design,
where “the system” now includes human cognitive processing [Sanders and McCormick, 1993].
Just as mechanical systems act on physical objects, and software systems act on information
objects, so cognitive systems create and respond to meaning, which derives from, but is not the
same as, information. For example, Shannon and Weaver noted that while transmission errors, or
“noise”, decrease meaning, they actually add information to a message (by increasing signal
choices) [Shannon and Weaver, 1949, p109]. Human meaning distinguishes “relevant” from
“irrelevant” information, and, as Weaver notes: “The concept of information developed in this
theory at first seems disappointing … because it has nothing to do with meaning.” [Shannon and
Weaver, 1949, p116]. Hence computer-mediated group interaction can be analyzed in terms of
cognitive meaning generating processes [Whitworth et al., 2001]. Finally a computer-mediated
community can be considered a socio-technical system, with social processes that can be
modeled [Herrmann and Loser, 1999; Whitworth and Felton, 1999].

Four System Levels.
The foregoing results in four system levels. based on IS literature, as shown in Figure 1.

Social

Cognitive

Information

Mechanical Hardware
system

Software

system

Human-
computer
interaction
(HCI) system

Socio-
technical
system (STS)

Figure 1. Information System Levels

Each level “emerges” from the previous, and adds a new level of causality. Information derives
from mechanics, cognitions from information, and society from common individual cognitions. The
term “information system” includes people and business processes as well as hardware and
software, i.e. it includes cognitive and social levels. When Alter defines a work system as
hardware, information, people and business processes [Alter, 2001], he is defining an information
system which at its highest level is a socio-technical system. Its performance can be analyzed on
four distinct levels. IS failure can occur at the:

• hardware level (chip overheating),
• software level (program infinite loop),
• HCI level (user misunderstanding), or
• social level (users feel the system opposes their culture).

System failure at any level affects those above them(if the hardware fails, the software must too),
but success at one level does not imply success at a higher one. Each level adds requirements.
Social requirements add to HCI requirements, which add to software requirements, which add to
hardware requirements. For example, a virtual community IS could perform well as hardware, use

262 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

bug-free software, offer excellent user interaction, but fail as a social system if users do not trust
it to be fair.

The WOSP model applies to any level system, but cannot be instantiated at more than one level
at a time, because each is a different world. Each level is a total “world view” in itself. A full
mechanical description of a computer system describes every voltage and circuit change.
Likewise a full information description describes every bit and variable value, and a cognitive
description covers every percept and concept. Each description is entire in that “world”, with
nothing left out. A theoretic that combined these levels would have to do so in a “world of worlds”,
which is hard to imagine. To regard hardware, software, people, and social groups as micro-
theoretic “interacting entities”, as Barnard proposes, is confusing [Barnard et al., 2000, p226]. If
mechanical, informational, psychological and social entities interact, within what world does that
occur?

Higher levels offer more powerful descriptions, e.g. a social description of a bulletin board can be
more useful than a record of bits and bytes. They are both, however, just different “views” of the
same base entity. The WOSP model manages each level of a multi-level system separately. It
applies to any level, but not multiple levels at once, because its axiomatic question is “What world
is the system in?”. The following analysis mainly uses IT and HCI examples, but mechanical
system examples are also given for clarity. For a discussion of virtual social system design see
Whitworth and de Moor [2003].

III. INFORMATION SYSTEM PERFORMANCE
Modern information systems face performance demands like those of biological systems, which
explains the variety of software available today [David et al., 2003]. But the variety of life
suggests that success is not only to the strong. Some animals, like tigers, possess powerful
claws and teeth, but others, like plants, can barely move, yet can survive on air, water and
sunlight. Some, like turtles, develop strong defensive shells, while others, like bacteria, focus on
parasitism – using others for their ends. Performance, it seems, involves multiple aspects, which
we now link to the basic system elements of boundary, internal structure, effectors and receptors.
If systems must both gain value and avoid loss, each element has a dual role in system
performance. It can be designed to maximize opportunity or minimize risk, giving eight system
design goals:

1. Effector purposes:
a. Functionality. To act on the environment.
b. Usability. To reduce the cost of action.

2. Boundary purposes:
a. Security. To prevent unwelcome entry.
b. Extendibility. To use outside objects or material.

3. Structure purposes:
a. Reliability. To perform the same despite internal change.

 b. Flexibility. To perform differently given external change.
 4. Receptor purposes:

a. Connectivity. To exchange social meaning.
b. Confidentiality. To control or limit social meaning exchange.

Figure 2 shows the web of system performance (WOSP) model. Giving performance values to
each goal creates a “web”, whose total area, it is proposed, represents overall system
performance better than any point alone. The WOSP model involves eight elements:

• Four “active” properties (functionality, flexibility, extendibility, connectivity), that could
make a system succeed.

• Four “passive” properties (usability, security, reliability, confidentiality), whose
absence can cause failure.

The WOSP model imagines these system properties as connected by elastic, so that increasing
any one property puts tension on its opposite, and to a lesser degree all the others. It shows
seemingly opposing goals (such as flexibility and reliability) opposite one another. It is a web
because the points are not rigidly connected, but merely in “tension”. Superficially, opposing pairs
seem rigid opposites, where one feature is traded against another, but this is not always so.
While opposing corners impose different design demands, the “web” can be expanded by
“pulling” two corners at once, i.e. opposing goals to genuinely expands the web. For example,

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 263

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

increasing functionality tends to decrease usability, but it is not inevitable that great results
require great effort. Mathematicians call the combination of logical power and simplicity elegance,
a much admired property. The WOSP model of system performance is now discussed in detail.

Figure 2. The Web of System Performance

External factors, like system creation cost, politics, distribution and advertising, lie outside its
scope.

FUNCTIONALITY AND USABILITY
System effectors acting on the external environment, can be designed to maximize action effects
(functionality), or to minimize action costs (usability).

Functionality
Functionality is a system’s ability to act upon its environment. It is not just what the system does,
but what it does to its environment. A car’s functionality includes its speed, acceleration, and
cornering. A system’s functionality can be given as a set of desired environment changes. The
greater the changes, the greater the functionality. An information system’s functionality is its
ability to change information, e.g. a word processor’s can change a document. The functionality
of an HCI system is the user tasks it can do, where a task is now a cognitive purpose [Zigurs et
al., 1999]. The advantage of highly functional software is that it gets the job done - it is task
effectual. A functionality focus gives “feature” laden software, like Microsoft Office, where each
new version adds or extends functions, assuming more is better. The unkind term “bloatware”
describes software with too many features for users to cope with.

Usability
If every system action uses resources, usability is minimizing those resource costs. If every action
costs, it pays to use the minimum effort for a given function, i.e. not using a sledge hammer to
crack a nut. For a car, lower petrol consumption (miles per gallon) helps performance by
increasing efficiency. For a mobile phone, lower power use and longer battery life also help
performance. For software, the resources are CPU cycles and memory. “Light” programs, that
use little memory or CPU cycles, can easily run as background utilities. Usability implies a

Confidentiality

Functionality

Connectivity

Security

Extendibility Reliability

Usability

Flexibility

264 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

minimalist approach to software development, removing “bells and whistles” and reducing waste,
i.e. “simpler is better”. Reducing action costs can increase speed or agility. For example, reduced
instruction set computing (RISC) uses less code to do the same work as complex instruction set
computing (CISC), and therefore acts faster. In cognitive systems, the resource of value is human
effort, especially for new users easily overwhelmed by detail. Modern screen design aims to
reduce cognitive effort, for example, by using existing mental models, structuring information in
chunks, managing attention, and using feedback loops to show information only as required, e.g.
Windows drag and drop copying uses an existing mental model of spatial movement, and auto-
hide only shows the taskbar when the mouse moves to the bottom of the screen, i.e. when
needed. Minimizing effort is not always easy, e.g. babies reach for an object with their whole
body, not just the reaching arm. Only with time does reaching occur without concomitant leg
waving – the child learns what effort is necessary for a result. Usability improved markedly over
the last decade, as designers learned to reduce user effort, with graphical user interfaces (GUIs)
replacing command user interfaces (CUIs). Easy-to-use software is easier to learn, implement,
operate, and maintain, reducing costs for training, installation, user manuals, and help support. In
a web setting, usability means a higher percentage of users stay to “click on”. Effort spent on help
screens, wizards, interface simplification and user feedback does not increase functionality, but
does increase IS performance, and is now an integral part of software engineering [Dray, 1995].

Functionality and Usability
Usability can be taken to include both ease of use and usefulness (or functionality) [Davis, 1989].
Others consider functionality (what the system does) a dimension apart from usability (how it
does it) [Hix and Schulman, 1991], as does the WOSP model. If new functions add cost (in user
learning or effort), increasing functionality will tend to decrease usability. More functionality
means more choice, and more choice requires more cognitive effort. An easy way to increase
usability is to reduce functionality. Functionality and usability are in a natural state of “tension”.
When under 50% of what a system does is actually used, users may question the cognitive cost
of that functionality, in long menus and crowded toolbars. In a survey of computer users by
Information Week, 90% of respondents said the complexity of IT is greater than it ever was
[Chabrow, 2001]. Yet a critical mass of functionality seems a key factor in software selection –
perhaps because one never knows if a function might be needed. Given a choice between
usability and functionality, users seem to prefer functionality, but given equal functionality,
usability can be critical [Davis, 1989]. It seems to be the reason why users preferred Word to
Word Perfect – Word offered largely the same functionality, but considerably more usability1.

One way to add functionality without usability cost is to re-use old learning. For example, the
same clip and paste interface works for text and graphics, though they are internally different
functions. Interface consistency reduces user effort, but is not always easy to achieve. For
example in Windows 98, dragging a file between drives copied it, within a drive moved it, and
dragging an .exe file created a shortcut. Users did not like the inconsistency, and Windows Me
dropped the drag an .exe to create a shortcut, though it still applies to files named install.exe and
setup.exe. Functionality based on existing cognitive resources does not incur usability cost, e.g.
adding 3D to a web site can increase cognitive functionality by adding depth, but incur no
usability increase because users (unless their vision is depth-deprived) process images for depth
anyway. Usability and functionality require different system design efforts, and combining them
successfully requires additional effort.

SECURITY AND EXTENDIBILITY
A system’s boundary controls whether objects or materials in the external environment enter and
become part of the system or not. It can be designed to repel external entities (security), or make
use of them (extendibility).

Security
Security is a system’s ability to protect itself against unauthorized entry, misuse, or takeover. A
powerful car does not perform well if it has no locks and is stolen. A security breach is equivalent
to system failure [Littlewood et al., 1993], and a system failure is a performance failure. Secure
hardware is sealed and tamper-proof for this reason. Software distributors prefer compiled to
interpreted software because users cannot alter it. The principle of denying entry is the same for

1 One could learn Word in a week, but learning Word Perfect took months.

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 265

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

hardware and software. The threat of hackers and virus programs makes security important for
software, involving boundary strengthening (firewalls) or checks (logon identification and
passwords). Security is, and always was, a critical aspect of IS design.

The WOSP definition of security is

“the ability of a system to resist attack” [Littlewood et al., 1993].

This definition is narrower than the traditional concept of security [DSS, 2001; OECD, 1996],
which aims to prevent all types of system risk by supporting:

• Availability, that data and programs are easy for people to access.

• Confidentiality, or control over information disclosure.

• Integrity, preserving data and programs from damage.

The WOSP model recognizes availability as ease of use, or usability, but sees both it and
confidentiality as distinct from security. It also distinguishes dealing with internal failure (reliability)
from defending against hostile entry (security) . For example, at an operational level the role of
the security forces who protect society differs from that of the engineers who maintain it. In the
body, the immune system defends, while damaged tissue repair involves another system. A
system can be reliable but insecure (easily penetrated), or conversely secure but unreliable
(easily breaks down). The WOSP model also distinguishes security from confidentiality.
Unauthorized system entry does not necessarily reduce confidentiality, and loss of confidentiality
may occur without system penetration (e.g. an impenetrable but transparent plexi-glass room).
While security protects the integrity of internal data, confidentiality concerns its display [Ware,
1984].

Extendibility
Extendibility is a system’s ability to incorporate or use outside elements in system operation. For
example, a car with a tow bar can attach a trailer, which then becomes, in effect, a part of the car.
Tool use, a key factor in human evolutionary success, is the use of outside objects to extend
performance. The tool becomes an extension of the person. Extendibility is sometimes called
openness. Our hands are open to use tools that extend their functionality, but our feet, while
capable at what they do, are not open to other functionality. Viruses, organic and computer, show
how systems with little functionality can use other insecure systems for their own ends.
Extendibility has been a powerful but surprising critical success factor in modern IS. Many
thought the early Apple Macintosh a better system than the early IBM PC. It appeared more
capable, reliable, secure, and usable. But it was a sealed unit, a propriety black box, unavailable
to third party developers. It was not extendable. The openness of the IBM PC design, with slots
for expansion cards, may have been a critical success factor in its design.

For a car to attach a trailer, its tow ball must match the trailer attachment size, or it cannot be
attached. To be extendable, systems and components must match. One way is to publish
“standards” that all can conform to. Another is for a system to make its points of extension known.
The benefits of openness explain the value of Netscape making its browser source code publicly
available – it increased extendibility. Who would have thought, in the early days of software copy
protection, that broadcasting source code would be a means of business success? Open
software can now be extended with downloaded components, such as Internet Java applets, that
extend the system [McCarty and Cassady-Dorion, 1999]. Object linking and embedding (OLE)
allows software systems to use other applications as tools to process data. Just as a programs
can extend what it does, so data objects can be extended. For example, a document can import
an external graphic if it is of a known standard. A clipboard, that allows clip and paste between
applications, provides such a standard, allowing data to cross document boundaries.

Extendibility is about the benefits of opening rather than closing the boundary, letting things in not
keeping them out, about opportunity not risk. Third party “plug-ins”, and open systems
architecture, are now an established feature of IS performance.

Security and extendibility
Increasing security means a “thicker” system boundary, whether for a network or a society.
Ultimately the system is like a fortress, with extensive outer defenses, and a small active center.
Increasing system security seems to go with centralization of system control, and decreased
movement of material and goods across the boundary. Closed societies that focus on security, by

266 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

restricting borders and centralizing control, find the reduced trade depresses economic
performance [Popper, 1945]. Just as functionality and usability are in a state of tension, so are
extendibility and security. Here the tension is between using and denying what is outside. While
security is paramount in dangerous environments, it excludes good influences as well as bad.
Too much security, like too little, can reduce system performance. Every download, every e-mail
attachment, could be a Trojan horse or a gift horse, a danger or an opportunity . Eric Raymond’s
analogy of the cathedral versus the bazaar styles of software development aptly expresses the
contrast between security (the cathedral) and openness (the bazaar) [Raymond, 1997]. The
Internet illustrates the power of extendibility. Its security is weak, but it was designed to be highly
scalable (easy to extend) [Berners-Lee, 2000]. Some predicted it would soon collapse, being so
insecure, but by extending and decentralizing itself, it became strangely strong. The Internet’s
strength is that were it destroyed tomorrow, people would simply rebuild it – its autonomous parts
would recreate the system.

Combining security and extendibility means recognizing the natural tension between letting things
in and keeping them out. Security is not simply building a fortress, nor is extendibility giving
everyone the key. Both are part of system performance, and software designers must find
creative ways to combine them.

RELIABILITY AND FLEXIBILITY
A system’s internal structure manages and supports the system. It can be designed to perform
the same over time despite internal changes (reliability), or to perform differently to fit
environmental changes (flexibility).

Reliability
Reliability is a system’s ability to continue or recover performance despite internal variations, like
part failure. It can be measured as the probability of failure-free operation for a specified length of
time [Littlewood et al., 1993]. A car that is slow, but always starts reliably, is indeed a wonderful
system. Reliable systems continue to operate under high stress or load. If affected, their
performance degrades “gracefully”, rather than crashing catastrophically, and if they do fail, can
be repaired quickly. Error code is essentially code to recover functionality that failed, i.e. to
increase reliability. Reliable systems can be trusted to perform, and as planning requires
predictability, users may trade functionality for reliability. Unfortunately computer systems are not
well known for reliability [Weiner, 1993], and “If builders built buildings the way programmer’s
wrote programs, then the first woodpecker that came along would destroy society.” [Weinberg's
law as quoted in Dickson, 1999, p184]. If appliances were sold like software, e.g. a refrigerator
with a list of “known faults” and recommended “work arounds”, there would be a public outcry.
While experienced users never buy version 1.0 of any software, a trend to reliability is emerging,
as users demand it, e.g. Windows XP marketing stresses its greater reliability. Companies like
Dell guarantee reliability through expensive after-service support, and their customers recognize
that value. Computer warrantees increased significantly in the last decade, so the cost of
replacement and repair is a good reason to produce reliable systems. Reliability is, and always
was, an important aspect of computer performance.

Flexibility
Flexibility is a system’s ability to “fit” different environments, and not be rendered ineffective by
changing circumstances, e.g. a tracked vehicle trades speed for the ability to operate in any
terrain. In IS, flexibility is also called portability or adaptability. A portability review for groupware
reported how a University’s plan to meet in a nearby IBM Decision Support Center was thwarted
by the weather: one participant proclaimed “What good is all this technology when a little snow
can stop the whole thing?” [Wheatley and Flexner, 1991]. Distributed e-mail systems, by contrast,
perform regardless of weather or place. Flexibility enjoys a long history of relevance in IS.
Acrobat documents are now marketed on their platform flexibility (PC, Mac and Palm). CSMA/CD
(Ethernet) protocols, which give nodes flexible network access as required, largely replaced
polling protocols, which inflexibly check every node regardless of demand, even though polling is
more reliable. Likewise, in database design, the more flexible relational model largely displaced
hierarchical and network models. Most software now includes a “preferences” module to
configure it, e.g., for different users, countries, and networks. For example, the Windows control
panel can adapt Windows for disabled users. Language conversion modules change software
into any language, and cultural conversion modules could follow. Flexibility is especially important
in social software, as the first author discovered when designing a groupware system with over
150 changeable design parameters for such issues as who could comment, mail availability, vote

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 267

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

visibility, and more. It was expected that user preferences would soon define the best group
interaction configuration. This forecast didn’t happen. Every new group situation demanded a
new configuration. After some years, it became apparent that no configuration is “best” for human
social interaction because variability is the rule not the exception [Whitworth et al., 2001]. System
flexibility, designed initially as a research luxury, became in the end a practical necessity. In IT
management, the need for flexibility is linked to the turbulent business computing environment
[Knoll and Jarvenpaa, 1994], and is an important critical success factor in the fast changing world
of computers.

Reliability and Flexibility
Reliability and flexibility impose contradictory design requirements on internal structure. A
system’s base reliability depends on component reliability. Perfectly reliable components should
result in a perfectly reliable system – but this outcome is rarely the case. Emergent reliability
arises from how system parts interact. If each part’s output is another’s input, system reliability is
the product of the part reliabilities, e.g. a system of 100 sequential components each with 99.9%
reliability has only a 90% reliability, and one with a thousand components has only 37%
probability of correct performance. If the system fails when one part fails, reliability drops
drastically as the number of parts increases, i.e. as systems develop. Reliability thus favors
reducing part inter-dependencies. Therefore, programming texts advise minimizing subroutine
interactions (or coupling) to reduce error. Another way to increase reliability is duplication or
redundancy. A plane may duplicate critical control cables, so if one fails the other can take over.
In information exchange, redundancy (information duplication) protects against transmission
failure, perhaps why English is about 50% redundant [Shannon and Weaver, 1949, p104]. In
ASCII transmission the redundant check digit may signal an error, requiring re-transmission
(recovery). The military cross-train personnel, so if some die, the rest can continue. An army of
perfect specialists would be maximally efficient, but also maximally fragile. In sum, de-coupling
and redundancy are ways to increase reliability.

Now consider the demands of flexibility - to fit functionality to environment change and be change
receptive. Base flexibility again derives directly from part flexibility. A tracked vehicle, such as a
military tank, is flexible because its tracks operate on a variety of terrain. But often this is not so.
Although one can replace parts entirely, like a “flexible” business that simply fires and hires as
times change, adding or removing system parts is expensive. Nature prefers emergent flexibility,
which derives from how parts interact, like a company that re-structures jobs internally when
times change. Emergent flexibility is the variety of adaptive configurations a system can adopt,
like a flexible person who can “flex” into a variety of yoga positions. For example, a car can attach
chains to travel in snow, giving a new configuration, and then remove them for highway driving.
Because more parts to configure means more effort, an 8-wheel vehicle is harder to convert than
a four wheel one. Flexibility thus favors less redundancy, not more (as reliability does). Hence
programmers are taught modularity – to place each logic in a single place, and make all other
uses sub-routine calls. Then, if needs change, the programmer must change only one place.
However such modularity increases part interaction, which as shown earlier, reduces reliability.
Reliability seeks to contain ripple effects, where one error spreads and crashes the system, but
coupling can also increase adaptive variability. Millions of colors are generated by the eye from
the interaction of just three retinal frequency receptors (red, blue and green). The astounding
information power of genetic code, where a zygote the size of the period at the end of this
sentence contains enough information to create a human being, arises from gene interaction.
Rather than one gene affecting one trait, many genes combine to affect each trait, and most
genes affect many traits. More information can be stored in the interactions than in the elements
themselves. In sum, interactivity and modularity are ways to increase flexibility.

Reliability and flexibility are in a natural design tension. Increasing flexibility tends to decrease
reliability because every change is also an error opportunity. For example, Windows users can
flexibly change their file type associations. The first author accidentally associated icon files
(*.ico) and Word, so every desktop icon became a Word file, effectively disabling the desktop. If
reliability and flexibility are in design tension, to increase performance designers must address
both at once, e.g. early Windows users could flexibly change their screen settings, but changing
to an unsupported screen level meant the user could not recover, as they could no longer see the
screen. Now, unless the user confirms screen changes within a few seconds, the system
recovers the previous settings, i.e. more flexibility also required more reliability. Many options
modules now include a “Restore Defaults” button, so users can recover from changes. Likewise
increasing reliability may require more flexibility. For example, Windows Me’s System File

268 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

Protection (SFP) scans system files and replaces suspicious ones with the originals. It seems a
great idea to avoid file corruption errors. However flexibility was ignored, as it uses fixed criteria,
set when Windows Me was released. Therefore, if you upgrade an application to a better driver,
SFP will instantly undo the upgrade next time it runs. SFP design ignored the fact that systems
must change as well as not change; hence, experienced users often disable it.

Perfect reliability, like perfect security, seems a myth. While theoretically error code covers all
contingencies, in modern event driven software, the combinations increase factorially with the
number of messaging objects. Perfect reliability soon becomes practically impossible, as every
combination cannot be checked. In a changing environment, perfect reliability may be a fault not
a virtue. Hence designers of computer agents searching the Web are exploring the benefits of
serendipity, or chance system variability (i.e. unreliability!) [Campos and Figuerido, 2002]. As
software advances, the WOSP model suggests that combining reliability and flexibility is more
beneficial than seeking either exclusively, giving what is called internal and external robustness
[El Sawy and Nanus, 1989].

CONNECTIVITY AND CONFIDENTIALITY
The world wide web introduced a new social dimension to software performance, involving
communities, conversations and networks. Social interaction is a performance multiplier, critical in
human biological success [Maturana and Varela, 1998]. People in societies create non-zero-sum
benefits from the synergy of cooperation using communication [Wright, 2001]. While previous
purposes are individualistic, communication requires two or more systems. Systems can be
designed to enable information and meaning exchange (connectivity), or to limit it
(confidentiality).

Connectivity
Connectivity is the ability of a system to support information and meaning exchange, about the
external world, personal states, and group action [Whitworth et al., 2000]. Functional actions were
earlier attributed to effectors, because effectors create actions. Even so, actions occur in a
feedback loop, where perception plays a guiding role. Communication also involves a feedback
loop, but the end result, meaning, is now created by receptor activity. Meaning is created by
system receptors, just as actions are created by effectors. A car’s horn works because other
drivers hear and attach meaning to it. For cars to be connected, they would need to directly
sense each other (e.g. to avoid crashes using radar receptors). The signals of communication are
arbitrary. For example, people can communicate by voice, sign language, facial expression,
smoke signals, and in many languages. Communication requires no particular signal, only
common processing. When children learn a language, they learn common ways to process
arbitrary signals. This requires not strong muscles, claws or teeth, but “strong” eyes, ears and
sensory processing. Computer communication also requires common processing. Protocols like
ASCII, RS232 and TCP/IP are essentially “social” agreements on how arbitrary signals are
processed. Connected software allows users to interact socially with others, or can itself connect
to stay current by downloading updates. Connectivity includes how signals are routed, for
example circuit vs. packet switching. It also includes the number of channels, channel bandwidth,
immediacy, symbol variety, and rehearsability [Dennis and Valacich, 1999].

Connectivity is distinct from functionality, as its goal is meaning exchange, not environment
change. Without a listener, speaking is functionally just the creation of air turbulence. An e-mail
system’s functionality is its ability to act as a word processor, and create message content. By
contrast, its connectivity is its ability to send and receive messages. A system could create
graphical messages, but only connect by an ASCII text channel, or vice-versa. Connectivity is
also distinct from extendibility. Communicating parties have mutual choice, but when a virus
program uses another system, it is not a mutual affair. Importing information into a document is
not communication, which requires an independent and autonomous other. In today’s online
world, connectivity is an important new aspect of system performance.

Confidentiality
Confidentiality is a system’s ability to limit the release of information about itself. Not releasing
information can be as important as communicating. Car anti-radar equipment tries to confound
radar detectors, and tinted windows keep out prying eyes. Camouflage in animals is an attempt to
keep confidentiality, as are military “stealth” capabilities. In a social setting, confidentiality is
usually called privacy, and is important because how one is viewed affects how one is treated
socially. Being viewed significantly energizes the viewed party, an effect psychology calls social

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 269

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

facilitation [Geen and Gange, 1983]. Confidentiality is important for social beings, whose well
being depends heavily on how the group sees them. Most people do not wish to be viewed
asleep for example, as unconscious words or acts could lead to ridicule or contempt. In software,
subroutines can declare variables private (not released) or public (released). Good reasons exist
not to make all variables public. Encryption is one way software can protect information from
display.

Privacy seems based on the idea that a system should own information about itself [Whitworth
and deMoor, 2003], and hence have the choice to release it or not. US Supreme Court Justice
Louis Brandeis described privacy as the ‘right to be left alone’, i.e. to not communicate.
Confidentiality is as important as connectivity in social interaction. The widespread selling and
storing of personal information on the web for profit, with effects from identity theft to electronic
“spam”, led to public complaint [Wright and Kakalik, 1997]. Online actions can be recorded
electronically, limited only by a storage capacity that is doubling every eighteen months. It may
soon be simple to record all actions of all people on the Internet. If so, everything said and done
in cyber-space could, as is currently the case for public media figures, be “on a record”. Without
privacy, something said in a chat room by a person at 18 could be publicly re-quoted twenty
years later. For example, statements Billy Graham made about Jews, in a supposed private
telephone conversation with Richard Nixon over twenty years ago, were recently released, much
to his chagrin, when Nixon’s tapes were made public. Few private citizens would like everything
they said on a permanent, searchable electronic record. Computers could make cyber-space an
unforgiving place, where everyone is a public figure, always “in view” and “on record” [Brin, 1998].
It does not have to be this way. Johnson [2000] makes the case that privacy is a social good,
allowing people to be themselves, free from social pressure. Confidentiality seems a “sleeper”
issue whose importance will increase as the Internet becomes more social [Agre and Rotenberg,
1997].

Connectivity and Confidentiality
While connectivity increases information and meaning exchange, confidentiality limits it. Both are
natural requirements of social interaction, and naturally opposed. Yet privacy is not just about
holding back personal information, but rather about user choice over their own information
[Nissenbaum, 1997]. People want to communicate by choice, and be private by choice. For
example, when you enter a public space you can see others, but equally they can see you. You
choose to be viewed so that you can also view. To be like the invisible man, able to see others
who cannot see you, seems an unfair social arrangement. Fairness – that if you see another,
they should be able to see you – seems a way to reconcile connectivity and confidentiality
[Whitworth and deMoor, 2003].

IV. USING THE WOSP MODEL

The WOSP model can be used as a:

• Process oriented system design framework for designers developing systems, or
• Product oriented evaluation framework for users making system purchases.

WOSP REQUIREMENTS SPECIFICATION
 While most system design models, like the waterfall model, define how design should proceed,
the WOSP model defines design goals. It is a multi-goal orientated approach to requirements
engineering, as suggested by Chung et al.[1999] As goals may contradict, design becomes a
balancing act in the space of system performance. The overall goal is system performance, i.e.
successful environment interaction. It is a more dynamic approach to software engineering than
the traditional one-dimensional production line path to “excellence” via fixed specifications [Clegg
et al., 1997]. It suggests the following for advanced system design:

1. Environment fit. Performance profiles must “fit” the environment .
2. One-dimensional development. Can be of limited value.
3. Balanced development. May give the most benefit.
4. Combination breakthroughs. May be necessary for system success.
5. Development strategy. Need both more specialization and integration.

Environment Fit
The web of performance is a multi-dimensional performance space, in which different system
designs position themselves. Each design has not only a capacity, but also a profile. Which
profile aspects are valued depends on the environment or situation. Some require systems with

270 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

simple functionality but high security, others need high usability but ignore confidentiality. While
excellence in all areas is ideal, one may deliberately choose efficiency of code size over run-time
flexibility, if this approach “fits” better. In a rapidly changing world, flexibility and extendibility may
be important, while in a threat environment, security and privacy may need more focus. For a
mobile workforce, the time to learn a system (usability) may be critical - a system that takes three
months to learn is of little use if workers tend to leave after 6 months. Designers could estimate
the resource allocated to each goal, as shown in Table 1, to get a system development profile.

Table 1. WOSP Goal-Environment Fit
Goal Detail Resource%

Functionality To act effectively upon the environment.
Usability To operate efficiently, easily or quickly.

Security To resist or avoid outside attack or take-over.
Extendibility To use outside components or data.

Reliability To avoid or recover from internal failure.
Flexibility To change to fit outer circumstances.

Connectivity To communicate with other systems.
Confidentiality To control internal information release.

Performance To interact successfully with environment. 100%

One-Dimensional Development
The WOSP model suggests that improving any aspect of system performance can create tension
in others. For example, the connectivity of the Internet raises design problems for security [James
et al., 2001] and privacy [Lessig, 1999]. Early developments may be easy, because “slack” is
available, but as performance increases so, it is suggested, does the tension. The more a system
advances, the harder it is to advance further by single feature progress. If the web of
performance is elastic, pulling the web at a single corner only may reduce the value at other
corners, so one-dimensional technology gains can “bite back”:

“The more powerful systems have become, the more human time it takes to
maintain them, to develop the software, to resolve bugs and conflicts, to learn
new versions, to fiddle with options.” [Tenner, 1997, p266].

The designer’s paradox is that adding a feature can even reduce system performance. For
example, consider adding video/multi-media functionality to e-mail. Video e-mail could then
become less usable (need extra training). Video-viruses may be easier to conceal in multi-
channel data, reducing security. Extendibility could be less, if video e-mail cannot be printed. It
could be less reliable (more likely to fail), and less flexible if versions do not exist for Macintosh or
Unix users. It could provide less connectivity if it overloads network channels. Finally, if users
cannot control where the camera points, they may release unwanted information (such as about
the room behind). Who wants to tidy their room before sending an e-mail to Mother? A gain in
functionality could reduce usability, security, extendibility, reliability, flexibility, connectivity, and
confidentiality. Depending on the value of video, the result could be a net performance loss. For
video e-mail to out-perform current e-mail, and supercede it, developers cannot just add video
functionality, but must “weave” it in with other performance goals.

Balanced Development
Unintuitive as it seems, improving a system’s best aspect, which probably contributed most to its
success, can be the worst way to increase performance, even though this aspect is the current
design focus, and where pundits look to predict the future. If performance is the web’s area, it is
most increased by improving the weakest (and least obvious) aspect. This concept seems why
technology trends tend, after a while, to go in unobvious directions. For example, virtual reality
goggles were touted a few years ago as the future of gaming (based on previous multi-media
gaming advances). However it did not take off, while interactive gaming, connecting in virtual
social worlds, became popular (e.g. The Sims). Games also became more extendable, as users
produced plug-in files to add new creatures, weapons, and even rules, e.g. Doom’s WAD files.
Game editors allow users to create scenarios or maps that others can download and play, and
expansion packs that extend games sell well. Similarly in business, while more of the same
media richness was seen as the future of IS, recent advances are in anytime, anywhere flexible

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 271

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

computing. That balance, rather than power, is the key to success may explain why broadly
successful “killer’ applications, like browsers, e-mail, and chat rooms, are surprisingly simple in
their functionality.

Combination Breakthroughs
Application advances often do not come easily. In 1992 Apple CEO John Sculley introduced the
portable, hand held Newton, saying portability was the wave of the future. We now know he was
right, but developing flexibility alone was not enough. The Newton’s handwriting recognition was
poor, making it hard to use, and in 1998 Apple dropped the line. The flexibility advance was
neutralized by reduced usability. Only when Palm solved the usability problem, with its Graffiti
language, did the market for PDAs revive. The WOSP model implies that as systems advance,
simply increasing one system aspect alone may be insufficient. Advances may require
combination breakthroughs, i.e. simultaneous development at more than one corner of the web.

Development Strategy
The WOSP model implies that as systems advance, development will require a multi-focus effort,
with both more specialization and more integration. But why not just create one list of “system
requirements”? Although possible, designing a user interface and a database update require
different skill sets. Designing for plug-in extendibility needs knowledge of data standards, while
security design needs knowledge of virus threats, suggesting specialized teams of various sizes
for each goal, e.g., a security team, a usability team, a standards team, and a privacy team.
Table 2 suggests how each team could design a different system layer, with different
specifications, code, and testing. for example, error code can be designed, written and tested
apart from functional code.

Table 2. WOSP Layers for Analysis, Design and Testing

Goal Analysis Design Testing
Functionality,
capability,
usefulness,
effectiveness

Functional analysis: Analyze
desired environment effects

Main application layer:
What the system does

Validity testing:
input/output test bed

Usability,
simplicity,
parsimony,
efficiency, ease

Usability analysis: Analyze
user processing costs,
feedback cycle time, cognitive
effort, simplicity

Interface layer:
Help system, tutorials,
wizards, advice pop-ups,
status bar feedback

Usability testing: cognitive
walk through, protocol
analysis, user heuristics

Security,
defense,
protectiveness

Threat analysis:
Analyze external threats and
denial methods, identify weak
points

Security layer:
Logon and system entry,
authorization and security
levels

Penetration testing:
Unauthorized entry
probes, attack tests,
hacker simulation

Extendibility,
openness,
scalability,
compatability

Interoperability analysis:
Analyze third party data,
standards and tools

Portal layer, plug-in
manager, import & export
data, clipboard

Compatability testing:
Plug-in testing,
import/export testing

Reliability,
stability,
dependability

Contingency analysis: Analyze
possible failures & recovery

Recovery layer, error
recognition, backup, and
recovery

Failure testing:
Load tests, disaster
recovery tests

Flexibility,
adaptability,
portability,
customizability,
plasticity

Adaptability analysis: Analyze
likely environment changes
and possible responses.
Includes trends analysis

Configuration layer, control
panel options, user
preferences, system
parameters, change
management

Situation testing: Test
different hardware
platforms, languages,
users, operating systems,

Connectivity,
interactivity,
sociability

Communication analysis:
Analyze ability to exchange
information

Interaction layer, protocols,
networking, channel
transmissions

Transmission testing: Test
for sending/receiving
information.

Confidentiality
privacy, secrecy,
rights

Legitimacy analysis: Analyze
who owns what information.

Rights layer, System
permissions, transfer and
delegation of rights

Social testing: Test the
community accepts the
system

Such specialization creates a need for integration, because developing for one purpose may “cut
across” another [Moreira et al., 2002], giving design conflicts that must be traded-off, prioritized,
or creatively resolved. For example, a logon sub-system (security) could make a system less
usable, but equally is a chance to welcome the user by name, and remember their preferences,

272 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

i.e. also make the system more usable. Specialists must work together to achieve such
synergies. Though the WOSP design purposes are distinct, there is only one system. Fitting one
purpose while denying another is like taking from housekeeping to pay the gas bill. Each team
could flag areas for discussion with other teams, or opposing teams could be combined, e.g., if
functionality and usability specialists were on the same team, they would tend to reconcile
differences. This would result in four teams, considering actions (functionality and usability),
interactions (security and extendibility), contingencies (reliability and flexibility), and
communications (connectivity and confidentiality).

WOSP SYSTEM EVALUATION
 The WOSP model can help evaluate one or more system’s performance.

Measuring WOSP Aspects
System aspects like security, usability, and reliability are often considered “quality” features, that
constrain or modify functionality [Nixon, 1998]. The WOSP model does not make this distinction.
Every aspect, it is proposed, can constrain or modify another, e.g. usability can compromise
security, and security can diminish usability. The functionality goal in Table 1 differs from others
only in being more obvious and easily specified. It can be detailed as a set of desired
environment effects, e.g. to authorize sales, maintain accounts and print statements. These
“tasks” are a qualitative measure of functionality. They can be decomposed further into sub-tasks
of any detail. Functionality can be measured at the ordinal level by asking people to rate their
satisfaction with these tasks, and at the interval level by the percentage of desired base functions
the system supports [Hix and Schulman, 1991]. It is less obvious that the usability goal of Table 1
can similarly be decomposed and measured, but as user rather than environment effects. For
example, the “three click rule” (any task must be doable in three clicks) is a usability “task”.
Gediga et al reduced 651 items from usability inventories to 90 items for the seven usability
“principles” of ISO9241-10, like self-descriptiveness, and conformity to expectations [Gediga et
al., 1999]. This goal decomposition allowed system experts to rate usability, giving scores that
reliably and validly discriminated between systems [Gediga et al., 1999]. Just as one can develop
a prototype user interface with no functionality, so usability can be rated independently of
functionality. Naturally there is no usability without functionality, but equally unusable software
effectively provides no functionality. The same logic applies to reliability, security and flexibility, as
system failure, system attack, and environment change can render functionality null. The detail is
beyond the scope of this paper, but the same approach, of decomposing goals, can be applied to
the other WOSP dimensions of Table 1, giving cardinal measures (desired effects), ordinal
measures (rating scales), or interval measures (summary scores). For example the TRUSTe
trademark system is a qualitative rating of web site privacy [Benassi, 1999], and mean time
between failure (MTBF) is an interval measure for reliability. The WOSP constructs are
conceptually distinct, and so measurable.

Combined measurements
WOSP dimensions can be combined, e.g. Hix and Schulman found evaluators could rate the
usability of various system functions (Figure 3).

 Usability

 N/A

Function 1

Function 2

Function 3

Function 4

Funct-
ionality

Function 5, etc

 Adapted from [Hix and Schulman, 1991]

Figure 3. Usability by Functionality

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 273

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

Note that in combining the two dimensions, functionality is measured qualitatively, while usability
is ordinal. If both were interval, one could divide them, as in the traditional performance metric for
database performance, throughput (or workload) divided by cost or time per transaction, i.e.
functionality divided by ease of action [Bitton et al., 1983]. Both measures are equally part of
performance – to prefer one to the other is like taking the numerator of a fraction as more
important than the denominator. The approach could be applied to other pairs, for example
measuring openness relative to security, or connectivity against confidentiality. Equally Figure 3
could show reliability against functionality, or rate the security risk of different extendibility
operations. Measuring such intersections shows where meeting one requirement reduces
another, an issue ignored when measuring performance aspects in isolation [Moreira et al.,
2002].

Comparing Webs
 If system aspects can be rated, then experts can compare systems in a common environment
without developing common measures. For example, compared to DOS, the early Windows
operating system seemed to have at least equal functionality but more usability (GUI interface),
more flexibility (control panel), more extendibility (drivers), and more connectivity (network ability).
Whether it was more secure, reliable, or confidential than DOS is debatable, but it seemed not
markedly less so. The resulting Windows web of system performance overlays that of DOS
completely (Figure 4), suggesting it performs better, and should replace DOS, given marketing
and change management to overcome the inertia of an entrenched system.

Confide ntia lity

Func tiona lity

Conne c tiv ity

Se c ur ity

Ex te ndibility

Fle x ibility

Re lia bility

Us a bility

D OS
W indow s

Comparing electronic and paper communication systems however yields a different picture. E-
mail provides an electronic form with similar capabilities to paper, but better editing. Usability is
also high in replying to a message, as the reply address, date sent, sender address, and sender
title/text is added automatically, so a reply like “OK. Do it” costs literally only a few words of
typing. Users perceive e-mail as more spontaneous than letter writing because it is easier to use
[Lea, 1991, p169]. E-mail, like paper mail, can contain attachments. Security is a problem,
because e-mail is easy to forge, and does not have the status of a signed legal document. Paper
is also more reliable. It never “crashes” and seems more permanent, while network servers can
fail and lose e-mail. Paper also seems more flexible - a note can be read almost anywhere, while
e-mail requires an online computer to be read initially. E-mail’s lack of privacy is a concern,
because e-mail is viewable by anyone with file access, whether a network supervisor or hacker.

By contrast, postal messages have a covering envelope, which leaves visible signs if tampered
with. As succinctly said “The e-mail of the PC is more deadly than the mail [postal]” [Neumann,
2000]. President Bush’s 2001 decision not to use e-mail seems based on its lack of privacy. Yet
e-mail offers extraordinary connectivity, e.g. Kiesler reported that a new idea posted on

Figure 4. WOSP comparison of DOS and Windows

274 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

Figure 5.WOSP Comparison of E-Mail and Paper Communication

Figure 5. WOSP Comparison of E-Mail and Paper Communication

a computer network was directly sent to 300 colleagues in branches across the country, and in
two days generated enough replies to launch a new project [Kiesler et al., 1984]. Figure 5
summarizes these conclusions, showing e-mail with more functionality, usability, and
connectivity, similar extendibility, but less reliability, flexibility, security, and confidentiality than
letter mail. The e-mail web of performance only partially overlays that of paper communication,
suggesting it will only partially replace it, as it has. For e-mail to replace paper entirely (i.e. the
paperless office), the WOSP model suggests it must become more reliable, flexible, secure and
confidential. These changes may already be happening. Computer network reliability is improving
every year, pervasive wireless networks now allow anywhere access to e-mail via small portable
systems, electronic bio-identity devices could make e-mail as secure as a written signature, and
public encryption could provide a much needed privacy “envelope” for e-mail. But until electronic
mail’s web of performance does expand, we can expect paper to remain in use.

NEW TECHNOLOGY
The WOSP model provides a useful framework for new technology. Wireless devices make
people’s work more flexible (or environment independent), but other WOSP factors still apply. On
a hardware level, cell phones can be more or less functional (voice message quality), usable
(keys not too small), portable (easily carried), reliable (if dropped), secure (if stolen), extendable
(earphones, phone covers), connected (to communication channels) and private (others cannot
overhear conversations). On a software level, the same goals provide challenges for a ubiquitous
computing application [Banavar and Berstein, 2002], which may have to work with different
devices, in different networks and for different users, i.e. move seamlessly from one environment
to another. It must be resilient to data entry errors, network unavailability, or device power failure,
and recover graciously from them. The software must be scalable, to add support for new
products, and secure to protect against virus attack. Lack of both standards and security are
currently major obstacles to mobile wireless application development [Smith et al., 2002, p472].
Advancing in one area can cause problems in another, e.g. upgrading connectivity from one-to-
one 1G circuit switching to 2.5G “always on” packet switching created security problems. On
cognitive and social levels, privacy may be the Achilles heel of mobile computing. Anyone can
pick up broadcast wireless signals with the right equipment. Not just cell phones, but also home
wireless networks, could be monitored. The issue is not just message content (as when reporters

Confidentiality

Functionality

Connectivity

Security

Extendibility

Flexibility
Usability

Paper

E-Mail

Reliability

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 275

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

overheard Princess Diana using her cell phone for a private meeting), but also message
properties:

“A key feature of these devices [wireless devices] is their ability to identify a user’s
location, if the user is connected, and, in the future, who the user is.” [Smith et al.,
2002, p469].

General Motor’s developed the OnStar system to provide navigation support for its cars. But who
owns that information, which includes user identity, location, and time? Could it, for example, be
subpoenaed in a messy divorce case? The potential privacy problems of mobile computing may
challenge its effectiveness. In a social world, people do not want to live in glass houses. It is not
an insoluble problem, because a system could be designed to not store personal data, and so
avoid privacy issues. Balance implies that while success requires many causes, failure needs
only one. The WOSP model is a useful checklist for weaknesses.

IV. DISCUSSION

THEORY INTEGRATION
The WOSP model extends and integrates previous theories, including TAM, the general security
model, and non-functional requirements research.

TAM Theory
The Technology Acceptance Model (TAM) proposes that perceived usefulness (functionality) and
perceived ease of use (usability) affect the user decision to accept software [Davis, 1989]. The
WOSP model extends TAM, by proposing that other factors, like reliability and security, also
factor into user acceptance, i.e. that users base system acceptance on a general estimate of
system performance.

General Security Model
The general security model developed in the context of a hostile environment [Jonsson, 1998],
and “security” came to cover all properties that reduce the risk of failure and increase
“survivability” [Lipson & Fisher, 2000]. The WOSP model suggests that to succeed in an
environment, a system must thrive as well as survive, so survival is not equivalent to successful
performance. Success requires systems also take opportunities, via functionality, extendibility,
flexibility and connectivity. The WOSP model is thus also an extension of the general security
model.

Non-Functional/Quality Requirements
Requirements like security and reliability are often considered “non-functional” requirements
(NFRs). Though specified as functional requirements [Rosa et al., 2001], they are considered
different because [Nixon, 1998, p132]:

1. They can conflict with each other.
2. Specification techniques are varied.
3. Their impact is global.
4. Their relevance varies from system to system.

However these differences are not absolute.

1. Goals like security can conflict with functionality, as well as other NFRs.
2. Functional specification methods vary.
3. A system’s functionality also impacts globally.
4. While the relevance of NFRs varies among systems, the relevance of functionality

also varies (relatively). Some systems contain more error code, or interface code,
than functional code.

The WOSP model does not distinguish “functional” from “non-functional”, but sees them all as
“requirements” which modify one another. Their existence and interaction are considered system
realities that must be addressed. Many software failures can be attributed to treating NFRs as “a
second or even third class type of requirement … frequently neglected or forgotten.” [Cysneiros
and Leita, 2002, p699]. All requirements should be considered from the beginning of software
development, as the cost of adding them later increases rapidly with time. If performance is more
than just functionality, the priority of performance goals should be assigned, not assumed. In
dynamic, mixed opportunity/threat environments, like the word wide web, users want systems
with functionality and usability, reliability and flexibility, security and extendibility, connectivity and

276 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

confidentiality, i.e. balanced systems. Anything less may tend to be less successful. The WOSP
model integrates and extends a variety of NFR specialist research.

Theory Expansion
Each WOSP aspect of system performance is valid but incomplete. As a 1997 security review
notes:

“The face of security is changing. In the past, systems were often grouped into
two broad categories: those that placed security above all other requirements,
and those for which security was not a significant concern.” [Kienzle and Wulf,
1997].

If security must co-exist with system needs outside its specialty, one response is to broaden the
concept. Perhaps integrity, reliability, availability, and confidentiality evolved as the global security
concept grew. While this broadening fills a theoretical vacuum, it creates conceptual confusion,
e.g. mechanisms that increase fault-tolerance (reliability) can actually reduce system security,
which is illogical if reliability is an aspect of security [Jonsson, 1998]. While security could be part
of a unifying “dependability” concept [Laprie and Costes, 1982], recent models reclaim the
reliability/security distinction, as the first is based on provision of service, while the second is
based on denial of service [Jonsson, 1998].

Other specialties seem also subject to theoretical expansion. The usability measure of Gediga et
al. [1999] includes “suitability for the task” and “error tolerance” as aspects of usability. Usability,
like security before it, is in danger of becoming a confusing catch-all term for performance. A
review of flexibility in IT management includes “scalability” and “connectivity” as potential aspects
of flexibility [Knoll and Jarvenpaa, 1994, p6]. Again a specialist term is conceptually expanded to
fill the theory space available. The WOSP model suggests it is better to retain modular
constructs, but recognize their intersection. Security then is as much an aspect of reliability as
reliability is of security, or reliability of usability. The unifying concept is system performance.

The Technology Advance Cycle
That performance is not uni-dimensional explains why progress is not uni-directional. Progress is
not a train on a single set of railway tracks. Rather it seems on many tracks simultaneously,
switching between them in unexpected ways. Hence neither the explosion of the Internet, nor the
cell phone expansion was predicted by experts [Smith et al., 2002]. Berners-Lee’s World Wide
Web project was rejected by CERN, the Hypertext community, and Microsoft, before becoming
the way of the future [Berners-Lee, 2000]. But once new advances are recognized, suddenly only
their benefits are seen, while the problems they will create are not [Standage, 1998]. Cars, first
seen as avoiding pollution (from horse dung), are now major air polluters, an entirely unpredicted
problem. Today’s computer hype also occurred with the telephone a hundred years ago. The
most recent hype, mobile computing, is reminiscent of the multi-media hype of a decade ago. The
promise that multi-media interaction will solve everything is being replaced by the promise that
mobile computing will solve everything. The WOSP model supports neither expectation. Many
who over-invested in bandwidth alone discovered to their cost that progress is not uni-
dimensional. More media power now seems like just the nearest hill on a journey. Four stages of
technology advance seem to exist:

1. Naivety: The advance is unexpected to current experts.
2. Resistance: The advance is resisted by stakeholders unfamiliar with it.
3. Hype: The advance is expected to change everything for the better.
4. Realism: The advance “settles”, with both benefits and problems.

The middle “uncertainty” stages of the cycle often involve considerable avoidable loss, either as
opportunity loss from under-investing in progress (stage 2), or as risk from over-investing in hype
(stage 3).

The WOSP model suggests a realistic approach, minimizing stages 2 & 3.

• Prior advances may not be the best guide to future benefit. Experts are, by the
nature of things, experts in the past. In progress, we must expect the unexpected,
for it is sure to occur in some form.

• If developing one aspect can reduce others, there is no one “answer”, whose
improvement will solve all problems.

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 277

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

Performance is always a balancing act, and advances seem like vitamin C - too much can be as
much a problem as too little. The WOSP model is a realistic multi-attribute approach espousing
balance. It encourages wiser system design, system evaluation, and system investment.

REQUIREMENTS INTEGRATION.
The issue of integrating performance requirements is still in its infancy. The WOSP model
proposes multiple goals that pull system design in different directions. Fortunately the web is not
rigid – it can be expanded, e.g. functionality is not the inevitable enemy of usability [Borenstein,
1990], and Internet connectivity need not mean the end of privacy. What at first seems a zero-
sum allocation need not be so. But creating performance synergies by reconciling two or more
performance dimensions almost always requires creative system design. The challenge of IS to
devise creative ways to reconcile apparently contradictory performance goals, and genuinely
expand the web of system performance.

Flexibility and Reliability
For example, how can a system be both flexible and reliable, both de-coupled/redundant and
interactive/modular? A maximum reliability system would contain many duplicated parts,
operating in parallel, with minimum interaction. Then if one part fails, the others can continue –
performance degrades but does not collapse. Plants illustrate a reliability focus – many cells are
equi-functional, with cellulose walls that prevent interaction, hence plants cannot get cancer (the
cell walls prevent it spreading). However a maximum flexibility system would contain specialized
non-redundant parts, so that changes in one place can alter the entire system. The human cortex
seems designed for such flexibility, with massive interconnectivity, each neuron connecting to up
to ten thousand others. Rather than storing memories in single locations, as hard drives do, the
brain seems to store them in the part interconnections, so one memory involves many neurons,
and one neuron is involved in many memories [Copeland, 1993]. Hence human memory never
reports a “disk full” error. But while extraordinarily flexible, like a database indexed on every data
field, human memory is not particularly reliable. Presumably natural selection preferred memory
flexibility to reliability. But the brain in general is extraordinarily reliable. Most computers “hang” or
malfunction at least once a month, while brains do so more rarely.

EXAMPLE

Consider the case of Phineas Gage, a railway worker. A flying iron rod smashed the
middle and left lobes of his cerebrum. Within minutes he was conscious and speaking, and while
showing disturbed behavior, lived for 13 years, and died of unknown causes [Copeland, 1993]. It
is difficult to imagine pushing even a pin through a computer without total collapse.

How can a brain, built from a thousand billion highly coupled and unreliable neurons, be more
reliable than a computer with fewer, more reliable, components? One answer is its design, which
overlays advanced flexible sub-systems over primitive reliable ones, like a plane that develops
computer controls, but retains the “fail-safe” manual ones, in case the onboard computer crashes.
In the brain, new sub-systems suppress old ones, but leave them intact (and available if the new
ones fail). This “overlay it” contrasts with the usual “replace it” approach to software updates, and
may be a better alternative [Meadows, 1997]. It increases both reliability and flexibility, because it
provides two potential processing sources. For example, retaining a keyboard interface while
adding a mouse interface seems inefficient, but it adds both flexibility (keys can be faster for
experienced users) and reliability (keys can be used if the mouse fails). Operating systems are
built in a layered fashion, and their reliability depends on their “kernel”. Hence for Microsoft to
increase Windows reliability, it had to change its base layer from DOS to NT, at great cost.

Modern error systems also illustrate sub-system layering. While early error code operated at the
mainline functional level, it resulted in “spaghetti” code. It was found better to separate error code
and functional code. Now an error control unit “calls” the main application, so if it fails, control
“falls back” to error recovery routines. One problem with a master control unit is that it could also
fail, causing the wholes system to fail, another is how to update it. Multiple processing, however,
raises subtle issues of how control is transferred.

Specialization and Holism
System evolution seems to require both greater part specialization and greater interaction among
parts. A system’s differentiation is the degree of difference between its constituent parts, e.g. in
embryonic development, each cell begins as equivalent - any cell can develop any function. As
the body develops, cells specialize into different forms and functions (hair cell, blood cell, brain

278 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

cell, etc). Likewise in simple social groups, most members can perform most functions, but as
societies evolve the division of labor increases. [Wright, 2001]. As systems advance, their parts
become more specialized, but more specialization means more complex part interaction.
Therefore, advanced systems tend to be “holistic”. Holism is how much changing one system part
changes the properties of others [Bertalanffy, 1968]. Holistic system parts may gain key
properties only when in relation to others [Esfeld, 1998]. Thus most biological sub-systems
behave differently when isolated than when within a body [Bertalanffy, 1968, p68]. In holistic
systems, a small change can cascade, creatively or catastrophically, giving what chaos theory
colorfully calls the “butterfly effect” (“The flap of a butterfly’s wings in Brazil can cause a tornado
in Texas”) [Gleick, 1987]. Since changing any part, even slightly, can change the whole
drastically, holistic systems are individualistic [Bertalanffy, 1968]; for example, one rarely finds
two people who look exactly the same. Complex programs, like the Windows operating system,
are becoming more holistic, e.g. small differences can have cascading effects that make each
user’s Windows installation different. Ignoring holism in technology design gives what Tenner
calls the “Frankenstein effect” – a cause of low system performance [Tenner, 1997]2. The issue of
managing both more specialization and more internal interaction resolves into one of transfer of
control, of what sub-system should act when. Natural selection has created an unexpected
solution: autonomy.

Autonomy
For a system to advance, its parts must specialize, which means only they know what they do,
and hence when to act. If a master control mechanism directs action, specialty knowledge must
be duplicated in the control mechanism, which defeats the point of specialization. For
specialization benefits to be realized, system parts need autonomy, the ability to direct their own
actions. This principle applies to societies, where specialized workers are more productive if
given freedom. It also seems to apply to software. While early software used a single main
control module to direct all actions, object orientated systems (OOS) grant “objects” limited
autonomy to initiate interactions by messages to other objects. It distributes rather than
centralizes control. Computer system part autonomy is increasing, e.g. screens that turn
themselves off, printers that perform self-maintenance as required, and operating systems that
decide to check the hard drive if you shut down incorrectly. Systems designed following the
principle of autonomy would not contain a master control center. Each part would act according to
its nature, and system actions would arise from the part interaction. The human brain seems to
work in this fashion, as a collection of sub-systems with no CPU [Whitworth, 1975]. For example,
“split-brain” studies show that the highest level of brain operation (the cortical hemisphere) is
duplicated, and each hemisphere can operate autonomously, as a “brain” in itself [Sperry and
Gazzaniga, 1967]. Autonomy seems the key to advanced system development. IBM is exploring
how increasing autonomy can improve IS performance [Mowbray, 2002].

Final Comment
In designing systems to satisfy multiple purposes, nature seems an excellent guide, and we
ourselves a good example Our imperfection on any single scale is as manifest as our success
overall. Naïve ideas of linear progress must be abandoned for a realistic view of disparate system
goals in design tension in a changing environment. The goal of advanced systems requires
balance, and advocates of single point “excellence”, whether it be reliability, privacy, security or
any other, should recognize each other. The situation we are in is ironic, being ourselves
advanced biological systems, with millions of years of system development, trying to create
advanced computer systems. To do so we must understand the general requirements of
advanced systems. It is a rare system that comprehends the principles of its own design.
However, since the systems we create must work with the systems we are, based on the same
world, the best guide to advanced computer system design may be ourselves.

ACKNOWLEDGEMENTS

Thanks to Beryl Plimmer, Manukau Institute of Technology, New Zealand, for first suggesting the
various system properties could be shown as a “web”.
Editor’s Note: This article was received on August 26, 2002. It was with the authors for approximately 5 and
a half months for 2 revisions and was published on September 2. 2003.

2 Dr Frankenstein made a human being by stitching together the best of each individual body part he could
find in the graveyard. The result was a monster.

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 279

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

REFERENCES

EDITOR’S NOTE: The following reference list contains the address of World Wide Web pages.
Readers who have the ability to access the Web directly from their computer or are reading the
paper on the Web, can gain direct access to these references. Readers are warned, however,
that

1. these links existed as of the date of publication but are not guaranteed to be
working thereafter.

2. the contents of Web pages may change over time. Where version information is
provided in the References, different versions may not contain the information or the
conclusions referenced.

3. the authors of the Web pages, not CAIS, are responsible for the accuracy of their
content.

4. the authors of this article, not CAIS,are responsible for the accuracy of the URL
and version information.

Agha, G. A. (2002). "Adaptive Middleware". Communications of the ACM, 45(6), 31-32.

Agre, P., and Rotenberg, M. (Eds.). (1997). Technology and Privacy: The New Landscape.:
MIT Press.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1994). Molecular
Biology of the Cell (Third ed.). New York: Garland Publishing Inc.

Alter, S. (1999). "A General, Yet Useful Theory of Information Systems". Communications of
the AIS, 1(March), article 13.

Alter, S. (2001). "Which Life Cycle --- Work System, Information System, or Software?".
Communications of the AIS, 7(17), 1-52.

Banavar, G., and Berstein, A. (2002). "Software Infrastructure and Design Challenges for
Ubiquitous Computing Applications". Communications of the ACM, 45(12), 92-96.

Barnard, P., May, J., Duke, D., and Duce, D. (2000). "Systems, Interactions, and
Macrotheory". ACM Transactions on Computer-Human Interaction, 7(2).

Benassi, P. (1999). "TRUSTe: An Online Privacy Seal Program". Communications of the
ACM, 42(2).

Berners-Lee, T. (2000). Weaving The Web: The Original Design And Ultimate Destiny of the
World Wide Web. New York: Harper-Collins.

Bertalanffy, L. v. (1968). General System Theory. New York: George Braziller Inc.

Bitton, D., DeWitt, D., and Turbyfill, C. (1983). Benchmarking Database Systems - A
Systematic Approach. Paper presented at the Proc. VLDB Conference.

Borenstein, N. S. (1990). "Power, Ease of Use and Cooperative Work in a Practical
Multimedia Message System". International Journal of Man-Machine Studies, 34(2), 229-259.

Boulding, K. E. (1956). "General Systems Theory - the Skeleton Of A Science".
Management Science, 2(3), 197-208.

Brin, D. (1998). The Transparent Society. Reading, Mass: Perseus.

Campos, J., and Figuerido, A. D. (2002). Programming for Serendipity. Paper presented at
the Chance Discovery: The Discovery and Management of Chance Events, North Falmouth, MA.

Casti, J. (1997). Would-be Worlds: How Simulation is Changing the Frontiers of Science.
New York: John-Wiley and Sons.

Chabrow, E. (2001). Uncomplicating IT: Simpler Said Than Done. InformationWeek,
831(04/02/01), 44

Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (1999). Non-functional Requirements in
Software Engineering.: Kluwer Academic.

Churchman, C. W. (1979). The Systems Approach. New York: Dell Publishing.

280 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

Clegg, C. W., Waterson, P. E., and Axtell, C. M. (1997). "Software Development: Some
Critical Views". Behaviour & Information Technology, 16(6), 359-362.

Copeland, J. (1993). Artificial Intelligence. Oxford: Blackwell Publishers.

Cysneiros, L. M., and Leita, J. (2002). Non-functional Requirements: From Elicitation to
Modelling Languages. Paper presented at the ICSE, Orlando, Florida.

David, J. S., McCarthy, W. E., and Sommer, B. S. (2003). "Agility - The Key to Survival of
the Fittest". Communications of the ACM, 46(5), 65-69.

Davis, F. D. (1989). "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
Information Technology". Management Information Systems Quarterly, Sep.

Dennis, A. R. and Valacich, J. S. (1999). Rethinking Media Richness: Towards a Theory of
Media Synchronicity. Paper presented at the Proceedings of the 32nd Hawaii International
Conference on System Sciences, Hawaii.

Dickson, P. (1999). The Official Rules and Explanations. Springfield, Massachusetts:
Federal Street Press.

Dray, S. M. (1995). "The Importance of Designing Usable Systems". Interactions, 2(1).

DSS. (2001, Nov-14-2001 12:57). Information System Security. Defence Security Service.
Available: http://www.dss.mil/isec/change_ch8.htm [2002.

El Sawy, O. A., and Nanus, B. (1989). "Towards the Design of Robust Information Systems".
Journal of Management Information Systems, 5(4), 33-54.

Esfeld, M. (1998). "Holism and Analytic Philosophy". Mind, 107, 365-380.

Gargaro, A., Rada, R., Moore, J., Carson, G. S., DeBlasi, J., Emery, D., Haynes, C., Klensin,
J., Montanez, I., and Spafford, E. (1993). "The Power of Standards." Communications of the
ACM, 36(8), 11-12.

Gediga, G., Hamborg, K., and Duntsch, I. (1999). "The IsoMetrics Usability Inventory: an
Operationalization of ISO9241-10 Supporting Summative and Formative Evaluation of Software
Systems". Behaviour & Information Technology, 18(3), 151-164.

Geen, R. G., and Gange, J. J. (1983). Social Facilitation: Drive Theory and Beyond. In A. P.
V. K. M. D. H. H. Blumberg; Hare (Ed.), Small Groups and Social Interaction (1) pp. 141-153).

Gleick, J. (1987). Chaos: Making a New Science. London: Penguin Books.

Goodwin, N. C. (1987). "Functionality and Usability". Communications of the ACM, March,
229-233.

Herrmann, T., and Loser, K. (1999). "Vagueness in Models of Socio-technical Systems".
Behaviour & Information Technology, 1999, 18(5), 313-323.

Hix, D., and Schulman, R. S. (1991). "Human-Computer Interface Development Tools: A
Methodology for their Evaluation". Communications of the ACM, 34(3), 75-87.

James, B., Joshi, D., Aref, W. G., Ghafoor, A., and Spafford, E. H. (2001). "Security Models
for Web-Based Applications". Communications of the ACM, 44(2), 38-44.

Johnson, D. G. (2001). Computer Ethics. Upper Saddle River, New Jersey: Prentice-Hall.

Jonsson, E. (1998). An Integrated Framework for Security and Dependability. Paper
presented at the NSPW, Charlottsville, VA, USA.

Keuffel, W. (2001). "Playing by the Rules". Software Development, 9(8), 64.

Kienzle, D. M., and Wulf, W. A. (1997). A Practical Approach to Security Assessment. Paper
presented at the New Security Paradigms Workshop, Langdale, Cumbria, U.K.

Kiesler, S., Siegel, J., and McGuire, T. (1984). "Social Psychological Aspects of Computer-
Mediated Communication". American Psychologist, Oct, 39(10), 1123-1134.

Knoll, K., and Jarvenpaa, S. L. (1994). Information Technology Alignment or "Fit" in highly
turbulent environments: The Concept of Flexibility. Paper presented at the SIGCPR 94,
Alexandria, Virginia, USA.

Communications of the Association for Information Systems (Volume 12, 2003) 250-275 281

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

Laprie, J. C., and Costes, A. (1982). Dependability: A Unifying Concept for Reliable
Computing. Paper presented at the Proc 12th International Symposium on Fault-Tolerant
Computing, FTCS-12.

Lea, M. (1991). "Rationalist Assumptions in Cross-Media Comparisons of Computer-
Mediated Communication". Behaviour and Information Technology, 10(2), 153-172.

Lessig, L. (1999). Code and Other Laws of Cyberspace. New York: Basic Books.

Lipson, H., and Fisher, D. A. (2000). "Survivability: A New Technical and Business
Perspective". CERT Coordination Center, reprinted by the ACM.

Littlewood, B., Brockhurst, S., Fenton, N., Mellor, P., Page, S., Wright, D., Dobson, J.,
McDermid, J., and Gollman, D. (1993). "Towards Operational Measures of Computer Security".
Journal of Computer Security, 2(3), 211-229.

Maturana, H. R., & Varela, F. J. (1998). The Tree of Knowledge. Boston: Shambala.

McCarty, B., & Cassady-Dorion, L. (1999). Java Distributed Objects: The Authoritative
Solution.: Sams.

Meadows, C. (1997). Three Paradigms in Computer Security. Paper presented at the New
Security Paradigms Workshop, Langdale, Cumbria, United Kingdom.

Moreira, A., Araujo, J., and Brita, I. (2002). Crosscutting Quality Attributes for Requirements
Engineering. Paper presented at the SEKE, Ischia, Italy.

Mowbray, S. E. (2002). Big Blue's Big Horn. Popular Science, March, 34.

Neumann, P. G. (2000). "Risks in Our Information Infrastructures.". Ubiquity: An ACM IT
Magazine and Forum, 1(13).

Nielsen, J. (1993). Usability Engineering. San Diego, CA: Academic Press Prof.

Nissenbaum, H. (1997). "Toward an Approach to Privacy in Public: Challenges of
Information Technology". Ethics and Behavior, 7(3), 207-219.

NIST. (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing (
NIST Planning Report 02-3): National Institute of Standards and Technology (NIST).

Nixon, B. A. (1998). Managing Performance Requirements for Information Systems. Paper
presented at the Proceedings of the First International Workshop on Software and Performance,
Santa Fe, New Mexico, United States.

OECD. (1996). Guidelines for the Security of Information Systems.: OECD.

Pielou, E. C. (1969). An Introduction to Mathematical Ecology.: Wiley.

Popper, K. (1945). The Open Society and its Enemies. London.

Raymond, E. S. (1997). The Cathedral and the Bazaar.
http://tuxedo.org/~esr/writings/cathedral-bazaar/.

Rosa, N. S., Justo, G. R. R., and Cunha, P. R. F. (2001). A Framework for Building Non-
Functional Software Architectures. Paper presented at the SAC, Las Vegas, NV.

Sanai, H. (1968). The Enclosed Garden of Truth (M. J. Stephenson, Trans.). New York:
Samuel Weiser.

Sanders, M. S.,and McCormick, E. J. (1993). Human Factors in Engineering and Design.
NY: McGraw-Hill.

Schor, J. B. (1991). The Overworked American: The Unexpected Decline of Leisure. New
York: Basic Books.

Shannon, C. E., and Weaver, W. (1949). The Mathematical Theory of Communication.
Urbana: University of Illinois Press.

Smith, H. A., Kulatilaka, N., and Venkatramen, N. (2002). "Developments in IS practice III:
Riding the Wave: Extracting Value from Mobile Technology". Communications of Association of
Information Systems, 8, 467-481.

282 Communications of the Association for Information Systems (Volume 12, 2003) 258-282

The WOSP Model: Balanced Information System Design and Evaluation by B. Whitworth and M. Zaic

Sperry, R. W., and Gazzaniga, M. S. (1967). Language Following Surgical Disconnexion of
the Hemispheres. In C. H. Millikan and F. L. Darley (Eds.), Brain Mechanisms Underlying Speech
and Language. USA: Grune and Stratton.

Standage, T. (1998). The Victorian Internet. New York: Berkely Books.

Tenner, E. (1997). Why Things Bite Back. New York: Vintage Books, Random House.

Toffler, A. (1989). The Third Wave, Bantam, NY (re-issue of 1980).

Ware, W. H. (1984). "Information Systems Security and Privacy". Communications of the
ACM, 27(4), 315-321.

Weiner, R. (1993). Digital Woes: Why We Should Not Depend on Software. Reading, Mass:
Addison-Wesley.

Wheatley, K. L., and Flexner, W. A. (1991). The Pitfalls of Portability ... or ... Why More is
Not Better. Paper presented at the Proceedings of the 24th Hawaii International Conference on
System Sciences.

Whitworth, B. (1975). Brain Systems and the Concept of Self. Unpublished MA dissertation,
Auckland, NZ:University of Auckland.

Whitworth, B., and deMoor, A. (2003). "Legitimate by Design: Towards Trusted Virtual
Community Environments". Behaviour & Information Technology, 22(1), 31-51.

Whitworth, B., and Felton, R. (1999). "Measuring Disagreement in Groups Facing Limited
Choice Problems". THE DATABASE for Advances in Information Systems, 30(3 & 4), 22-33.

Whitworth, B., Gallupe, B., and McQueen, R. (2001). "Generating Agreement in Computer-
Mediated Groups". Small Group Research, 32(5), 621-661.

Whitworth, B., Gallupe, B., and McQueen, R. J. (2000). "A Cognitive Three Process Model of
Computer-Mediated Groups: Theoretical Foundations for Groupware Design". Group Decision
and Negotiation, 9(5), 431-456.

Wright, M. A., and Kakalik, J. S. (1997). "The Erosion of Privacy". ACM Computers and
Society, Dec, 22-25.

Wright, R. (2001). Nonzero: The Logic of Human Destiny. New York: Vintage Books.

Zigurs, I., Buckland, B., Connolly, J. R., and Wilson, V. (1999). "A Test of Task-Technology
Fit Theory for Group Support Systems". The Data Base for Advances in Information Systems,
30(3,4), 34-50.

ABOUT THE AUTHORS

Brian Whitworth is Assistant Professor in the Department of Information Systems, New
Jersey Institute of Technology. His Masters thesis in neuro-psychology was on the implications of
split-brain research for the concept of self. He was Senior Army Psychologist in the New Zealand
Army, then moved into computing, developing operational software and simulations. For the last
decade he studied how human and social factors, like agreement, relationships, norms, roles,
legitimacy and meaning, affect the design of computer-mediated interaction systems. His
publications appear in Small Group Research, Group Decision and Negotiation, DATABASE and
Behavior and Information Technology. http://web.njit.edu/~whitwort/bwrefs.html

Michael Zaic is a student in the Department of Information Systems, New Jersey Institute of
Technology. He is interested in the design of complex information systems.
Copyright © 2003 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to publish
from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-mail from
ais@gsu.edu

 ISSN: 1529-3181

EDITOR-IN-CHIEF
Paul Gray

Claremont Graduate University
AIS SENIOR EDITORIAL BOARD
Detmar Straub
Vice President Publications
Georgia State University

Paul Gray
Editor, CAIS
Claremont Graduate University

Sirkka Jarvenpaa
Editor, JAIS
University of Texas at Austin

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Reagan Ramsower
Editor, ISWorld Net
Baylor University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of California at Irvine

Richard Mason
Southern Methodist University

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Chris Holland
Manchester Business
School, UK

Jaak Jurison
Fordham University

Jerry Luftman
Stevens Institute of
Technology

CAIS EDITORIAL BOARD
Tung Bui
University of Hawaii

H. Michael Chung
California State Univ.

Candace Deans
University of Richmond

Donna Dufner
U.of Nebraska -Omaha

Omar El Sawy
University of Southern
California

Ali Farhoomand
The University of Hong
Kong, China

Jane Fedorowicz
Bentley College

Brent Gallupe
Queens University, Canada

Robert L. Glass
Computing Trends

Sy Goodman
Georgia Institute of
Technology

Joze Gricar
University of Maribor
Slovenia

Ake Gronlund
University of Umea,
Sweden

Ruth Guthrie
California State Univ.

Juhani Iivari
Univ. of Oulu, Finland

Munir Mandviwalla
Temple University

M.Lynne Markus
Bentley College

Don McCubbrey
University of Denver

John Mooney
Pepperdine University

Michael Myers
University of Auckland,
New Zealand

Seev Neumann
Tel Aviv University, Israel

Hung Kook Park
Sangmyung University,
Korea

Dan Power
University of Northern
Iowa

Ram Ramesh
SUNY-Bufallo

Nicolau Reinhardt
University of Sao Paulo,
Brazil

Maung Sein
Agder University College,
Norway

Carol Saunders
University of Central
Florida

Peter Seddon
University of Melbourne
Australia

Upkar Varshney
Georgia State University

Doug Vogel
City University of Hong
Kong, China

Hugh Watson
University of Georgia

Rolf Wigand
University of Arkansas at
Little Rock

Peter Wolcott
University of Nebraska-
Omaha

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Samantha Spears
Subscriptions Manager
Georgia State University

Reagan Ramsower
Publisher, CAIS
Baylor University

