
Polite Computing

BRIAN WHITWORTH*

New Jersey Institute of Technology, New Jersey

This paper presents politeness as a key social requirement for computer human

interaction (CHI). Politeness is defined, in information terms, as offering the locus of

control of a social interaction to another party. Software that creates pop-up windows is

not illegal, but is impolite, as it preempts user choice. It is proposed that impolite

software drives users away, while polite software attracts them. Specifying politeness

suggests four requirements: (1) Respect user choice (2) Disclose yourself (3) Offer useful

choices (4) Remember past choices. Software that ignores these rules may fail not by logic

error but by social error. ‘‘Mr. Clippy’’ is an example of software that users often disable

because it is impolite. Operating systems could support application politeness by

providing an application source registry and a general meta-choice console. A future is

envisaged where software politeness is a critical software success requirement.

1. Introduction

As my Windows computer boots, the taskbar fills with little

icons. Each application that loads into memory increases

my startup time. Many of them I never use and don’t want,

but each new application installation seems to add another.

Some, like the virus checker, must be there, but others I

could call up as needed. They need not always consume

memory. Windows programs commandeer the start up

process in so many ways that removing them can be

difficult. Some have a ‘‘Do not load at startup’’ option, but

others are only removed by a registry change (or ‘‘hack’’).

Still others, like AOL and Windows messenger, rise from

the dead after being removed. If you upgrade windows you

find them back again, not just on the desktop but also

taskbar, startup menu, hard drive and registry.

If software that took over your computer for its own

purposes were a person, it would be called selfish. Selfish

people act in their own interests, treating others as pawns

on their checkerboard of life. If one can have selfish genes

(Dawkins, 1989), one can talk of selfish software, which

runs itself at every opportunity. Its ideal is to load at

startup, then run continuously.

In human society, such selfishness seems the anti-social

fly in the ointment of social cooperation (Ridley, 1996).

While we are all selfish, if we were completely so, game

theory suggests the win-win synergies of society would

reduce to lose-lose equilibria (Poundstone, 1992). The

‘‘non-zero-sum’’ benefits which modern society creates

suggest there is more to humanity than selfishness (Wright,

2001). Our ability to be ‘‘social’’ can resolve situations

selfish economics cannot, like the tragedy of the commons

(Hardin, 1968). While sociability at first seems less adaptive

than selfishness, our species may have succeeded as much

from sociability as intelligence, as cooperative society is

extremely productive.

The benefit of social values may extend to online

interaction (Friedman, Howe, & Felten, 2002). If politeness

is part of sociability, and sociability is productive, polite

software may be more productive. Polite software would

also make online society a nicer place to be. This paper

aims to define, specify and illustrate a vision of polite

computing.

2. What is politeness?

To apply politeness to software, it must be defined in

information terms. Webster sees politeness as ‘‘Exhibiting

in manner or speech a considerate regard for others.’’

*Corresponding author. Email: bwhitworth@acm.org

Behaviour & Information Technology, Vol. 24, No. 5, September 2005, 353 – 363

Behaviour & Information Technology
ISSN 0144-929X print/ISSN 1362-3001 online # 2005 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/01449290512331333700



(Marckwardt, Cassidy, & McMillan, 1992). It is a

fundamental social concept, yet actions polite in one

culture can be rude in another. This does not make

politeness arbitrary. The common form of politeness may

be its goal, not its specific behaviors, as was found for the

IS task concept (Zigurs, Buckland, Connolly, & Wilson,

1999).

It is useful to distinguish polite behaviors (whether

prescribed or proscribed), from the general intent of

thoughtful consideration (Miller, 2004). Miller calls both

etiquette, but let us call the specific behaviors etiquette, and

the general goal politeness. Then it can be argued that while

etiquette varies between cultures, politeness is a common

theme.

What is that theme? Reeves and Nass see politeness as

simply being more agreeable to others when in social

contact than when not (Reeves & Nass, 1996). For them,

agreeing with another’s self praise is one of the ‘‘most

fundamental rules of politeness’’ (Nass, 2004, p36). They

argue that when another says ‘‘I think I’m a good teacher;

what do you think?’’, polite people must respond ‘‘You’re

great’’, even if they don’t think so (Nass, 2004). Is

politeness just fake niceness?

Being agreeable may attend politeness, but does not

define it if one can be polite but not agreeable, or agreeable

but not polite. Giving money to the poor is kind, and

agreeable to them, but philanthropists may not be polite,

i.e. kindness is not equal to politeness. Conversely, one can

politely refuse, beg to differ, respectfully object and humbly

criticize, i.e. disagree, but still be polite. These examples

suggest that agreeableness is not the source concept behind

politeness.

Suppose that somehow people tended to be socially

considerate in their interactions, to be pleasant and

cooperative and avoid conflict. The ensuing social produc-

tivity would reward this tendency. What is ‘‘considerate’’

would vary between societies, giving no common etiquette,

but a general form could arise if the person considered

knows what is considerate for them. Then it would always be

considerate to give the other choices. This approach does

not presume to know what they want, e.g. if I meet a

mother with a baby at a door, hold the door open and say

‘‘After you’’, I am offering the mother choice, and being

polite. Yet, at that moment the baby may need attention.

The mother may say ‘‘No thank you’’, and attend the baby

not the door. Without choice, my ‘‘kind’’ act could be a

burden. Indeed any ‘‘good’’ act becomes bad if forced,

including helping little old ladies cross the street.

When equal parties interact to jointly create common

events, control is normally shared, e.g. in a conversation

both parties take turns speaking, and the interaction locus

of control passes back and forth between the parties. In this

situation, giving another the control is considerate, and so

polite.

Many examples of politeness follow this general form, of

giving choice. Interrupting some one is impolite, as it takes

away their choice to speak. Letting another to finish before

talking is polite, as they can choose when to stop. Asking

permission to do something is polite, because it gives the

other the choice to say no. The polite words ‘‘Please’’ and

‘‘Thank you’’ imply choice. Please implies the other had a

choice to say no, as one does not ask ‘‘Please’’ if the other

has no choice over the matter. Conversely, ‘‘Thank you’’

implies the other need not have done what they did, i.e. that

they had choice. One need not thank another for a forced

action, e.g. one would not forcibly eject someone from a

building then say ‘‘Thank you for leaving’’ (except

sarcastically). When people acting under orders are

thanked, like soldiers or firemen, it is the voluntary aspect

of their service that is recognized.

If the giving/taking of choice is central to the polite/

impolite distinction, politeness is more than kindness. To

make an unwilling child learn the piano or play sport may

benefit them in the long run, but an imposed good is not

polite, as it denies another’s choice.

However being offensive seems always impolite. Polite-

ness has two aspects: to offer another choice, and not to

disable their choice. When I politely say ‘‘After you’’ before

a doorway, it is assumed I am not blocking the entrance.

This duality corresponds to the linguistic concept of

politeness as maintaining positive and negative ‘‘face’’

(Brown & Levinson, 1987). Creating positive face is the

good image created when one gives choice, and avoiding

negative face is not taking another’s rightful choices (or

having one’s own taken). For linguists, politeness is

managing ‘‘face’’, which corresponds to both giving and

taking rightful choice, and not wrongfully taking or giving

the same.

Politeness presumes an absence of that which denies

choice, so is not just what one does but also what one does

not do. In social interaction, rude or offensive acts may

force a negative state upon another, so part of ‘‘considerate

regard’’ is to not upset the other by offensive acts. That

does not make politeness solely the avoidance of rudeness,

i.e. being always agreeable. Hating someone means you

don’t love them, but not hating them does not mean you

love them. Likewise politeness is more than not offending,

it is the giving of choice.

If politeness is giving choice, this implies the giver has the

choice to give. Can one offer another choice when one has

no choice oneself? Hence, we attribute politeness to people,

not machines. Politeness, by this definition, must be

voluntary.

Equally, giving choice is only polite if the receiver wants

the choice, e.g. letting another go first is only polite if they

want to go first. ‘‘After you’’ is polite when jumping into

a sinking ship’s lifeboat, but not when someone must

soothe a crying baby at night. Excessive choice can be

354 B. Whitworth



burdensome, which the issue of meta-choices later

addresses.

Giving choice means the other may return it. If a given

choice is required, it is coercion not politeness. It can be

polite to talk in a conversation where the other would

rather listen. Polite people monitor what the other wants.

That the locus of control is with another means they can

speak any time they wish. Giving the locus of control to

another does not necessarily mean forcing the locus (and

burden) of action upon them.

Finally, is the ‘‘consideration’’ of illegal and politeness?

If opening a door for one who wants to enter is polite, is

handing a gun to a serial killer who wants to kill someone

also polite? If someone would punch you in the nose, is it

polite to acquiesce? Most agree that politeness does not

enjoin us to enable choices society considers illegitimate or

illegal.

The above considerations can be summarized in a single

definition:

Politeness is any unrequired support for situating the

locus of choice control of a social interaction with

another party to it, given that control is desired,

rightful and optional.

The implications of this informational definition of

politeness will now be considered.

3. Politeness and the law

Politeness and laws have different social roles. Laws

formally specify the minimum a citizen should do for

social order, but not the maximum they could do. To give

what the law requires is not politeness, precisely because it

is required. One does not thank a driver who must stop at a

red light, but one does thank the driver who lets you into a

line of traffic when they don’t have to. Hence politeness is

offering more choice than the law requires.

Polite interaction, legitimate interaction and anti-social

interaction can be ordered by the degree of choice offered

(Figure 1). Anti-social acts, like theft, murder or rape, offer

the other party the least choice. Legitimate interaction

offers a fair sharing of choice, while polite interaction gives

the most choice to the other party. Politeness seems to

begin where fixed laws end.

The value of politeness is flexibility. It covers the gray

areas of social interaction, relieving the law from masses of

detail. Life has so many possibilities that no laws can cover

them all. Without politeness, one could wait endlessly to

enter a busy traffic stream. This would require a law that

after a certain wait time, entering traffic would have right of

way. How could such a law be implemented? What people

actually do is wait a while, then move forward until

someone is polite enough to let them in. Laws cannot cover

every case. Without politeness, rules could multiply like

weeds, creating a legal system that is expensive for society

to run. Saying sorry costs much less than a lawsuit.

Politeness reduces legal costs by leaving situations to the

social goodwill of the parties concerned.

Another advantage of politeness is that it is scalable, and

reciprocated socially not personally. If someone in the

street asks you for directions, it is unlikely the same person

will one day give you directions. Yet it is likely that one day

someone else in society will help you out. Hence, politeness

scales to large societies, where most people don’t know each

other personally.

If criminal activity destroys the fabric of society, and

legality maintains it, then politeness creates it by en-

gendering goodwill. Further, politeness remains effective

as social group size increases. It is well suited for a global

Internet society. If software were more polite, people

might be more willing to use it, and less willing to abuse it.

Online society would improve if designed with politeness

in mind.

3.1 A research question

The above discussion applies to interactions between

people not machines. Yet it could apply to CHI, as people

can interact with a computer as if it were a person, even

when they know it is not (Reeves & Nass, 1996). Miller

points out that if I accidentally hit my thumb with a

hammer, I blame myself not the hammer, yet people may

blame an equally mechanical computer for errors they

initiate (Miller, 2004). Software it seems, with its ability to

make choices, has crossed the threshold from inert to

active. It has achieved ‘‘agent’’ status, and we react to

agents on a social level.

This may not be as foolish as it seems. While the

computer is a machine, people create it’s programs. An

installation program acts as directed by the company that

designed it. If one party is directed entirely by a third party,

their actions represent that party. They are an agent for

them. If the third party is a social entity, then the

interaction is social, even if agent is not. If software

electronically mediates human-human interaction, whileFigure 1. Choice by interaction type.

Polite computing 355



the immediate interaction is computer-human, it makes

sense to treat an agent for a social source in social terms.

Studies show that people don’t treat computers as people

outside the mediation context (Goldstein, Alsio, & Wer-

denhoff, 2002), and show significantly more relational

behaviors when the other party is definitely human (Shect-

man & Horowitz, 2003).

The politeness motive could be a general desire to

exercise choice (Langer, 1975). If people have a natural

desire to control their environment, having control feels

good, and having no control will frustrate, giving anxiety or

anger. If choice is generally desired, polite software should

be preferred to impolite software. Politeness can be

measured as the number of desired user choices given by

the software minus the number that are taken away, e.g. if

the choice to add desktop items is user desired, software

that adds icons without asking would be, in that choice,

impolite.

Users should more often remove or ignore applications

that are impolite and reduce their choice. As users become

more adept at exercising choice, the effect should be more

pronounced. If computer human interaction is social, the

logic of politeness becomes an online research question:

In a computer-human interaction involving valued

physical, informational or cognitive resources, will

polite software be used and accepted more, and deleted

and disabled less, than impolite software?

4. Impolite computing

If polite actions offer choice and impolite actions deny it,

how polite is current CHI? Suppose one is browsing the

Internet and a pop-up window suddenly appears. You were

looking at one thing, then found yourself forced to look at

another. Your cursor, or point of focus, was ‘‘hijacked’’.

Your choice to look at what you want to look at was taken

away. This is not illegal, but it is impolite. Users don’t like

their screen real estate being commandeered by pop-up

windows (or pop-under windows that must later be closed).

Apologists suggest pop-up ads are the computer equiva-

lent of TV commercials, but TV ads leave the viewer channel

under viewer control. Pop-up ads initiate a new commu-

nication channel (a new window), and bypass user control in

doing so. TV viewers expect commercials, but pop-up ads

are unexpected. They are the equivalent of a TV commercial

changing your channel for you. Browsers that repress pop-

up ads are popular because pop-up ads are impolite.

Spam is also impolite, because it fills inboxes with

messages users do not want – it is email without receiver

choice (Whitworth & Whitworth, 2004). Telemarketing is

the telephone equivalent of junk email. Over 50 million

people signed up for the U.S. ‘‘Do Not Call’’ list, seeking

some choice from telemarketers who always call, wanted or

not. People’s reaction to spam and telemarketing is the

same - they want choice in communication. The common

theme of spam, telemarketing and pop-up windows is

impoliteness. People try to fight back. If they cannot, they

reduce their interaction, whether it is email, telephone or

browsing.

Getting ‘‘informed consent’’ before recording a person’s

activity is polite. It gives the person the choice to go ‘‘on the

record’’ or not. Responsible magazines ask before printing

a non-celebrity photo, and journals get permission to print

an author’s words. Yet only when Comet System’s 1998

secret generation of ‘‘click-stream’’ data created a media

storm did it disclose itself. Only when users objected to

Intel’s inclusion of a traceable Processor Serial Number

(PSN) in its Pentium III in 1999 was the ‘‘feature’’ disabled.

Only when Microsoft’s Windows98 secret registration

recording of user hardware and software details became

public did they agree to stop. There remains concern that

Microsoft’s Media Player, bundled with Windows XP,

quietly records the DVDs it plays and sends the data back

to Microsoft (Editor, 2002). The privacy record of

companies in cyberspace is at best weak (Privacy-Interna-

tional, 2002). If applications were polite, they would ask

before they did such things.

That people will reveal personal information online is not

the issue. They do. The issue is whether they should have

the choice to do so or not. Software that secretly adds,

deletes, changes, views, copies or distributes user data

without permission is impolite as it denies rightful user

choices. If the software norm is to take information first,

then ask later, software usage, including e-commerce, will

be less than it should be.

Installation programs are notorious for acting without

asking, e.g. the Real-One Player adds a variety of desktop

icons and browser links, installs itself in the system tray,

and if the user is not careful, commandeers all video and

sound file associations. It does this because it can, but

customers resent the invasion. Software upgrades continue

the impolite tradition. When Internet Explorer is upgraded,

it makes your browser home page MSN, and adds to your

Links bar without asking. What gives software the right to

change my home page? An installation program that

assumes it can change what it wants, is like furniture

deliverers assuming they can rearrange your house because

they happen to be in it.

The line between illegal and impolite is blurred, as what

is impolite today may be illegal tomorrow, e.g. programs

that dial long distance pornography on your phone bill,

change your browser or email preferences, place cookies on

your hard-drive to secretly record what you do, and record

your mouse clicks as you surf the web. Whether spyware or

stealthware, the common problem is taking user rightful

choices, i.e. impoliteness. The common consequence is a

reduced willingness to interact online.

356 B. Whitworth



5. The polite benefit

Some see politeness as a corporate cost, but the opposite

may be true. Many successful online businesses are polite,

and support rather than deny user choice. The rationale is

simple: customers given choices come back. Politeness

includes companies not pre-deciding what customers want,

being visible, helping users choose, and remembering past

choices, e.g. Amazon gives customers information on what

books similar buyers buy. This information is not imposed

by pop-up ads or flashing headers, but given as a view

option below. Rather than a noisy demand to buy, it is a

polite reminder of same-time purchases that could save the

customer postage.

Ebay’s customer reputation feedback is polite, and

helps both business and customer. Reputation informa-

tion, while about individuals, is created by the group as a

whole. It is not a personal product, so one has no

privacy rights to one’s reputation. If reputation informa-

tion is given as an average, the privacy of the individuals

creating it is secure. Aggregate group data is one of the

three levels of meaning people seek in social interaction

(along with factual and personal data) (Whitworth,

Gallupe, & McQueen, 2000), and group information

can strongly influence online decision making (Whit-

worth, Gallupe, & McQueen, 2001). Giving optional

access to valued choice relevant information is by the

previous definition, polite.

Google also illustrates that politeness pays. Google ads

do not scream from flashing headers but sit quietly at

screen right. They are options not demands, so users do not

mind them. Google e-mail (GMail) is free, but scans email

and shows ads relevant to the message content. This seems

to contradict privacy. Surely people will object to their

email being scanned? Not if it is done politely. Privacy does

not mean people want to be socially insulated. It is about

the user choice to reveal personal data or not, not about

keeping it secret (Nissenbaum, 1997). We are by nature

social, so people are acceptant of video surveillance when it

is disclosed, they know how the surveillance data is used,

and there is a public good reason (like security) (George,

1996). If Google gives customers opt-in choice, fully

discloses its data use, and does not force ads upon them,

its offer of free email will likely succeed.

Amazon, Google and E-Bay have succeeded by giving

customers what they want in a polite way. Customers want

to have choice. Companies that support this get return

custom. By giving rather than taking customer choice,

polite companies win business. In trade, politeness means

never having to say you are sorry. Impolite actions presume

a seller-customer battle, which as with any war, reduces

mutual benefits. Politeness in contrast, presumes a willing

customer who wants to purchase. In this synergistic

business model, the customer is not the enemy, but a

partner in mutual gain. It is an excellent way to manage the

customer relationship.

6. Specifying polite computing

The widespread problem of impolite software may reflect a

general software design ‘‘blind spot’’. There seem currently

no guidelines for designing polite software beyond common

sense. Specifying politeness in information terms addresses

Millers core etiquette question: ‘‘If the software were

replaced by a polite human assistant, how would that

assistant behave?’’ (Miller, 2004).

Software politeness can be modeled on human politeness.

When two people simultaneously approach a physical door,

they interact over a common resource. Polite people avoid

a physical collision. They stop and say ‘‘Excuse me’’.

Rather than rushing to be first, they stop and withdraw

gracefully. Both are visible, so each sees the other has

stopped, and knows to whom their interaction is directed.

Then one party politely signals the other to go first, perhaps

saying ‘‘After you’’, which offer may be returned (‘‘No,

after you’’). Politeness means the interaction locus of

control is offered, not taken. When an offer is accepted, the

giver remembers and supports that choice. By offering

choice (politeness), the situation is resolved without

conflict.

A similar analysis applies to other polite examples, like a

waiter in a restaurant. The waiter seats you, but respects

your choice to be seated elsewhere. The waiter introduces

him or herself, so you know to whom you are talking. The

waiter offers menu choices in a helpful way, and explains

choices you do not understand. Finally, a good waiter

remembers your choices next time you come (Cooper,

1999).

Person-to-person politeness suggests the following CHI

politeness rules:

1. Respect user choice.

2. Disclose yourself.

3. Offer useful choices.

4. Remember past choices.

6.1 Respect user choice

In social interaction choices may overlap, e.g. one party’s

choice may prevent another’s. In the doorway example, if

one person enters, the other is blocked. If politeness is

giving choice, its first requirement is not to deny another’s

choice, and preemptive acts do just that. A program that

changes a user’s browser home page without asking

preempts a user choice.

Polite computing means programs don’t try to domi-

nate the computer-human interaction. Polite software

should not initiate actions on common resources without

Polite computing 357



permission, including the desktop, registry, hard drive, task

bar, file associations, quick launch or other settings. To act

unilaterally on a mutual resource is impolite. If people own

the computers they purchase, applications should only act

with user consent. Inexperienced users may give software

permission to do whatever it thinks is best, as they don’t

know what is best. Experienced users may customize every

option, because they know what they want. In both cases,

polite software asks before it acts on or in another’s domain.

Rule 1: Polite software respects, and does not preempt,

rightful user choices.

6.2 Disclose yourself

In online social interaction, that parties see and are seen

seems important (Erickson & Kellog, 2000). To act secretly

behind another’s back, to sneak or hide for any reason, is

considered impolite. Why is it polite to introduce yourself?

If politeness increases another’s interaction choices, then

non self-disclosure reduces them. Each party is part of the

interaction. If one party is hidden, part of the interaction is

also hidden. A hidden party is untouchable, and thus

unaccountable for their actions. Hence, when individuals

interact, they want to know who the other party is.

Disclosing oneself is part of being polite, while secrecy can

imply malicious intent. When polite people introduce

themselves and state their business, they become accoun-

table for future responses, including retribution.

If polite people introduce themselves, polite software

should do the same. Users should see not only what is

happening on their computer, but also the source. In

Windows, the Task Manager shows active applications/

processes, but who is doing what is unclear. The social

source is hidden behind cryptic component names like

svchhost.exe. The cryptic names problem runs throughout

Windows, as applications can give their components any

names they like. If polite parties are visible, then the

software actors on the computer stage are often impolite.

Rule 2: Polite software declares itself and its social

source.

6.3 Offer useful choices

The third property of politeness is to offer useful choices.

To be useful, a choice must be understood as well as

desired. To confuse users with complex options, or give

insufficient information, is impolite and inconsiderate. A

choice misrepresented, or misunderstood, may not be a

choice at all. One can argue we are too ignorant to

understand the complexities of a software install, but the

same argument could apply to installing satellite TV. Most

users do not understand satellite technology, but still expect

installers to explain the options in a way they can

understand. If not, they may choose to not interact at all,

and find another installer. Likewise, software that does not

support user choice may not be used at all. People want

choice, and if not offered it, may go elsewhere.

Most users prefer simple to complex choices. A complex

act like an installation can be made simpler by analyzing

choice dependencies, how one choice affects another, e.g.

letting a user install an application without an essential

component is not a choice but a trap. Application-critical

components should be part of an all or none choice.

Analyzing choice dependencies can reduce many choices to

one – install or not. It can separate optional from essential

choices, so permission to install may imply hard drive,

registry and start menu access, but not desktop, system

tray, favorites or file associations access.

There is one situation where computers seem always

willing to give users choice - when things go wrong. Yet

these error message choice offerings are often like the

classic DOS ‘‘Abort, Retry, or Fail?’’ Few users knew the

difference between abort and fail. Usability has progressed

since then, but considerate error messages are still

uncommon. Programmers naturally report errors from a

programmer perspective, giving data like ports, IP ad-

dresses, variables, records and sectors. To be polite, they

must think in terms of user tasks and user choices.

Rule 3: Polite software helps users make desired

choices.

6.4 Remember past choices

Finally, it is not enough to give choices now but forget

them later. If previous responses are forgotten, the user

must redo them, which is inconsiderate. When polite people

meet again they remember the last time. They do not ask,

‘‘What is your name?’’ at every meeting. It is polite to

remember, yet every time I open Explorer it goes to its

preferred directory, forcing me to wait, as it finds and fills

it’s list panel with innumerable files I don’t want to see.

Eventually the cursor returns to me, to select my directory

of choice (which is never the one displayed). Each time I

interact with Explorer, it acts as if it were the first time I

had used it, although I am the only person it has ever

known. Why does it force its default directory on me every

time it starts up? Why can it not remember where I was last

time, and return me there? The answer seems to be that

currently programmers attach little value to politeness.

Such ‘‘amnesia’’ is a trademark of impolite software.

When choices repeat, software should remember the last

user choice as its default. The default reply to a user

permission request should be the status quo (the last user

choice). To make the default anything other than the status

quo is to ‘‘forget’’ the past user choice, and is impolite.

358 B. Whitworth



If a choice repeats continually, to ask the same question

repeatedly for the same reply is to pester, like the ‘‘Are we

there yet?’’ of children on a car trip. The other party must

reply again and again with the same answer, e.g. uploading

a batch of files can create a series of overwrite questions. If

the software continually asks ‘‘Overwrite Y/N?’’, I must

hover by the upload to periodically press ‘‘Yes’’, lest the

process stop. Polite software offers a general ‘‘Yes to All’’

option, i.e. it can remember from one upload to the next.

The ‘‘Do you want to connect?’’ request in Windows is the

same problem for a ‘‘No’’ choice. If you are reviewing email

offline (perhaps someone else is using the line), actions like

using Explorer trigger an Internet connection request every

few minutes. No matter how many times you say ‘‘No,

don’t connect’’, it keeps asking. It has no interaction

memory, which is impolite.

In general, software that takes in user choices in one

operation should remember them the next time.

Rule 4: Polite software remembers past user choices.

6.5 Summary

Polite software allocates user resources with permission,

discloses itself and its source, enables easy and simple

choices and can remember past interactions. Conversely,

impolite software acts preemptively, hides itself, confuses

users and forgets past choices.

Some informal pointers are:

1. Don’t preempt user choices.

2. Don’t dominate the interaction.

3. Make it easy for the user to have control.

4. Don’t interrupt the user, unless necessary.

5. Be brief.

6. Help users make desired choices.

7. Ask before acting on interface resources.

8. If in doubt ask; if you ask, remember.

9. Keep the user informed of your actions.

10. Don’t pester.

11. Offer choices relevant to the user context.

12. Offer useful choices

13. Say excuse me, thank you and please.

How important politeness is to users can be determined by

research. Impoliteness may constitute a new IS error type –

social error. A logic error can cause an information flow

failure that in turn causes a system failure or ‘‘crash’’. A

social ‘‘error’’, like impoliteness, can cause a social failure,

which is that the user ends the interaction. The software

still works, but if people dislike it and don’t use it, this can

also be considered a system failure. The end effect of

compiler and user rejection are the same - the application

does not run. If users ignore, disable or delete software they

find impolite, social failure becomes IS failure, especially on

the web. For example, my new modem software loaded

itself on startup, and regularly went online to check for

updates, usually to find none. When its ‘‘Searching for

upgrades’’ message would suddenly appear, I wondered, as

most users would, ‘‘Why are you doing this? Did I ask you

to?’’ The software was impolite so I removed it. Another

example of social failure is ‘‘Mr. Clippy’’.

7. Mr. Clippy must die?

Mr. Clippy was Office ‘97’s assistant, a paper clip figure

who guessed you were having a problem and stepped in to

lend a hand. Using advanced Bayesian logic, he was touted

as the future of smart help. His most famous line: ‘‘It looks

like your writing a letter. . .’’ came when you typed ‘‘Dear

. . .’’. Despite 25,000 hours of user testing (Horvitz, 2004),

Mr. Clippy was so notable a failure that his removal was a

Windows XP sales pitch (Levitt, 2001).

Searching the Internet for ‘‘Mr. Clippy’’ still gives

comments like ‘‘Die, Clippy, Die!’’ and ‘‘How do you turn

that moronic paper clip off?’’ According to a 2001 PC

Magazine survey, Mr. Clippy was the third biggest software

flop of the year, with same concept Microsoft Bob as the

first (PCMagazine, 2001). One user wrote (Pratley, 2004):

‘‘I HATED that clip. It hung around watching you with

that nasty smirk. It wouldn’t go away when you wanted

it to. It interrupted rudely and broke your train of

thought. It never actually had an answer to questions I

had.’’

yet some liked the little guy:

‘‘My favorite memory of the Office Assistant was when

I was working in my home office, and my 2 year old

niece walked into the room. When she saw Rocky [a

Clippy variant], her eyes lit up. I could tell she was

excited when she said, ‘‘What’s that?’’’’

Chris Pratley, a Microsoft designer, in his Mr. Clippy

weblog, asks ‘‘If you think the Assistant idea was bad, why

exactly?’’ (Pratley, 2004). If Microsoft and other designers

have not yet figured it out – Mr. Clippy was impolite.

Consider the four rules of politeness given earlier. Mr.

Clippy was friendly and smart, but interrupted the user.

You thought you were typing something? Sorry, you are

now talking to Mr. Clippy, who will discuss some cool but

irrelevant Word feature. Mr. Clippy broke the first rule of

politeness by preemptively taking control of the cursor.

Well, didn’t he then offer choices? Yes, but this is no more

being polite than kidnapping someone, then giving them a

cup of tea, is being kind. One cannot take user choice in the

name of giving it. The cursor was a common resource

Polite computing 359



between user and software, like the door in the example

given earlier. Its preemptive use should not have been a

software design option.

By opening a modal window and forcing a dialogue, Mr.

Clippy chose the impolite way to offer help. The polite way

is to present an optional side block, as Amazon and Google

do. One is an offering to help (giving choice) the other is

demanding to help (taking choice). Hence in XP, Mr Clippy

was replaced by polite smart tags and task panes.

Mr. Clippy was a selfish application, so turning him off

was not easy. Close his window and he would come back

next time, as happy as before. He ignored continuous

rejection. Choose the ‘‘Hide’’ option on the paper clip and

Mr. Clippy seemed to run away, but when Word started

again, he was right back in your world. He was like a guest

who would not leave, no matter how many times you

asked. To remove him you had to select options from the

tool menu and deselect the service. Any other rejection was

ignored. If Mr. Clippy had been polite, his control would

have been obvious on the clip itself.

Yet Mr. Clippy did try, and many liked him. While smart

help may not yet help experts, it may help novices or the

young, who may trade politeness for usefulness. The

control motive proposed to underlie politeness may vary

with expertise. Novices or children may not expect control,

and so not expect politeness. They are not usually in charge

themselves, so may not mind Mr. Clippy taking charge.

Given his usefulness to some, Mr. Clippy could have been

tolerable . . . if only he had listened.

Mr. Clippy ignored user disinterest, non-use and

repeated help request denial. His designers seemed to

assume they knew best (while politeness assumes the user

knows their needs best). Sometimes users do not know

what they want, so to interrupt once is tolerable. However,

to interrupt repeatedly when repeatedly rejected is impolite.

Mr. Clippy could watch your document actions, but had no

memory whatsoever of his interaction with you. No matter

how often you ignored or rejected his help, Mr. Clippy kept

on coming. People build relationships by remembering past

interactions, and expect ‘‘intelligent’’ software to do the

same. Smart software should be smart enough to recognize

rejection. The ability to remember past interactions could

have turned Mr. Clippy’s failure into success. All he had to

do was know when he wasn’t wanted.

By the usability theories of the day, Mr. Clippy should

have been a winner. He had multi-media animation. He

could be a cute little dog or a clever professor. He could

express emotions like interest or boredom. He had Bayesian

logic. However, none of this made him any the less rude.

Mr. Clippy was a know-it-all who took over and did not

listen. If he did know it all, it might have worked, but he did

not. The failure was not of friendliness, cleverness or

usefulness, but of politeness. The designers of Mr. Clippy

forgot to make him polite.

8. Polite operating systems

If politeness is a desired property of online interaction, it

needs operating system support. Why should applications

attend politeness if operating systems do not? Some ways

this could happen are now suggested, but as cultures differ

in etiquette, so software could support politeness in many

ways. Only the goal is common – valid user choices.

8.1 A property rights approach

If politeness is a social concept, we can apply a social

property rights framework to information systems (Rose,

2001), moving the physical concept of ownership to

information worlds (Whitworth & deMoor, 2003). Owner-

ship is a complex social concept, yet most people find it

familiar and understandable. Similarly, space perception is

also complex, but users find it familiar, so it is useful in

GUI interactions. The term ‘‘screen real estate’’ suggests

users easily think of information in property terms. All

computer resources (CPU, memory, hard drive, registry,

ports etc) can be considered ‘‘real estate’’. Interface areas,

like the desktop, start menu, taskbar, quick launch and

favorites, can be considered the same way. The concept of

screen real estate can be extended to all CHI resources.

The question then raised is, how should this real estate be

governed? If the parties are the user and the software,

options include autocracy, anarchy or polite power sharing.

Currently Windows applications may ask user permis-

sion to change system resources, but need not do so. In the

latter case, their actions are invisible except by their effect.

People can see where a T.V. installer is going, but have no

idea where a computer installation program is going, or

what it is doing. If programs can do what they want, who

owns the computer? If one pays for a computer hard drive,

screen, memory and ports, should one not own it? If I own

my ‘‘personal computer’’ (PC), should I not have choice

over what happens within it?

Like citizens in a society, most computer applications are

useful, some are idle, but a few are thieves who abuse

common resources. When social parties act by what they

can do, not what they should do, society calls it ‘‘disorder’’.

On the PC estate, disorder arises when application

‘‘subjects’’ can act at will. If currently running applications

can and do change any system resource, then software

‘‘might’’ has prevailed over user ‘‘right’’. The degree of

disorder depends on whether the operating system

‘‘Sheriff’’ is maintaining order or sleeping on the job. He

is not powerless, as his private estate (the operating

system kernel) is protected from application intrusion. If

the operating system can shield and protect itself from

applications, can it not do the same for users? The

operating system could encourage applications to ask

before they act, i.e. support politeness.

360 B. Whitworth



Why bother with politeness? Politeness is an antidote to

social disorder. The problems of social disorder are waste

and instability. The waste occurs when people must undo

changes they didn’t want with anti-spyware utilities, check

software they don’t trust with firewalls, and in general, act

as if they are at war with their PC. The instability means

Windows degrades over time, due to the ‘‘freedom’’

applications have. Programs put files wherever they like,

with no accountability, and uninstalled applications are not

removed cleanly. Over time, Windows becomes bloated by

an ever increasing ‘‘residue’’ of left-over files and registry

records. The degradation occurs when an operating system

gives selfish applications too much freedom. Eventually,

only reinstalling the entire operating system (and reinstal-

ling all applications and resetting all preferences), recovers

system performance.

Windows XP gives users more choice than before and so

is more polite than before, but seems a trend not an arrival.

Two general deficiencies are inadequate choice and uneven

choice, suggesting two politeness improvements:

1. An application source registry (ASR)

2. A general meta-choice console (GMCC)

Both could increase user goodwill and reduce system

degradation.

8.2 Application source registry

To manage their information estate, users need informa-

tion, like:

1. What are the requested choices?

2. Who are the choice agents?

3. Why take these choices?

The Windows Task Manager shows current applications/

processes and lets users end any one. The MSConfig Service

shows startup applications and lets users prevent any one.

In both cases, the description field answers the ‘‘What’’

question, but ‘‘Who?’’ and ‘‘Why?’’ are left for users to

guess. Who, in social terms, means an accountable person or

company. To help applications disclose, the operating

system could offer an application source registry, where

each new installation would create a source record, giving

contact and other details. Users would see registered

sources, like Microsoft or Acrobat, as actors in their

computer estate. Sources would link to applications and

applications to information resources. ‘‘Source’’ could be a

property of every desktop icon, menu item, taskbar icon and

hard drive listing. Clicking this property, say on a desktop

icon, would show who is responsible for it. No longer would

it be unclear whether a cryptic file is system critical, or just

left behind by an application long ago uninstalled. One

could view the resources each source allocated, and for

example, delete all icons, items and files from a given source.

Polite self-disclosure need not be forced, so an applica-

tion source registry could be fully backward compatible.

Applications need not disclose, but a source record would

still be created with the title ‘‘anonymous’’. Of course users

might reject anonymous sources. Letting users know who is

doing what would let the social marketplace create more

polite software.

8.3 A general meta-choice console

In Windows XP, users can right click to add icons to the

desktop (the ‘‘New’’ option), but cannot add items to the

start menu or taskbar, though any installation program can

do this. Does the desktop belong to the user, while the

taskbar and start menu belong to applications? Why is the

add choice available for some interfaces but not others?

Perhaps too many choices could overwhelm users?

Offering choice in the offering of choice (meta-choices)

could counteract such information overload. An example is

the ‘‘Do not ask me this question again’’ meta-choice

checkbox. Firewalls like Zone-Alarm would be unwieldy if

users had to confirm every channel access every time. Meta-

choices like:

1. Always accept

2. Always reject

3. Let me choose

mean users need only set repeated access permissions once.

The firewall then remembers their choice, and does not

pester the user.

The initiation problem is when users choose always reject

for a choice they later want. It affects marketers and system

critical requests. A new user who accidentally chooses

‘‘Don’t Ask Me Again’’ for an update, might never undo

the error. People change their minds, and may choose

‘‘Never’’ for offers they would later gladly accept. A general

meta-choice console (GMCC) would give a common place

to change meta-choices. Even so, security choices, like virus

updates, may be entitled to ‘‘nag’’, letting you delay your

virus update 3 days but not forever. Some choices should

not be permanently turned off.

Different applications handle meta-choices in different

ways, or not at all, which confuses users. A GMCC could

manage all meta-choices consistently, as Windows MSCon-

fig offers a common interface for all startup choices. The

Services Computer Management Console offers these meta-

choices for all running programs:

. Automatic – as software requests

. Manual – as user requests (at the time)

. Disabled – do not run

Polite computing 361



Whatever a program does, operating system meta-choices

give users overriding control. Why not extend the concept

to all CHI resources, putting all resource meta-choices in a

single place? A general meta-choice console (GMCC) could

manage all meta-choices, not just those for startup and

CPU. It would record and remember all application

resource permissions. If a desktop icon were deleted, the

GMCC Desktop tab could put it back. An application that

insisted on putting icons on the desktop every update could

be denied. Permissions could be organized by social source,

like Adobe or Mozilla. Like any estate manager, most users

are busy people, happy to delegate. A general meta-choice

console would give users the final say, and make applica-

tions more polite.

9. Discussion

Politeness is a valid software requirement, but should it be

forgotten while security is an issue? Politeness and security

may be two sides of the same coin of social health. By

analogy, a gardener defends his or her crops from weeds,

but does not wait for every weed to be killed before

fertilizing. If politeness encourages social acts and security

reduces anti-social acts, they are complementary not

mutually exclusive.

Politeness may aid security, by addressing a source of

attacks - resentment or anger against a system where the

powerful are perceived to predate the weak (Power, 2000).

Politeness counters this attitude by giving away choice,

contradicting the idea that others take what they can in

cyberspace, so I can too. When some people voluntarily

offer choice, others may do the same, and those who attack

society may think again. If politeness reduces anti-social

acts at their bitter source, polite computing should

accompany security not follow it.

It is not proposed that people be polite to software, but

that software be polite to humans. That people want this

seems enough reason for it to happen. Politeness seems a

development of usability and human-centered computing.

As users become computer-literate, the view that ‘‘software

knows best’’ is hard to sustain. Perhaps once, computer

users were like children, but children grow up, and as they

do, they want more choice.

The unpleasant alternative to politeness is war. Today,

many users feel at war with their software: removing

what they didn’t want added, resetting changes they

didn’t want changed, closing windows they didn’t want

opened, and deleting e-mails they didn’t want to receive.

User weapons in this war include third party tools like

Black Ice, SpyBot, Spam-Killer, Pop-up blocker and

Zone Alarm. At download sites, these are the most

popular accesses. The user goal is to wrestle a semblance

of control from selfish programs. This human-computer

conflict has a cost.

Electronic commerce, though a billion-dollar industry,

has consistently performed below expectations. In online

trade, both seller and buyer gain. The seller reduces costs,

and the buyer gets more choice. If electronic commerce

benefits both customers and companies, why is it not the

majority of all trade? Every day millions of customers seek

hundreds of thousands of products and services from web

sites that offer them. Yet most purchase from brick and

mortar rather than online sources (Salam, Rao, & Pegels,

2003). Something is wrong.

Customer conflict is not the norm of brick and mortar

businesses, and should not be so for online business. Social-

technical systems are both social and technical. Their

success depends on the user response as well as the compiler

response. Making choices is what computers do, but it is

also what people do. To avoid choice conflict, software

must be polite. That people control their computers, not

the reverse, is a non-negotiable HCI requirement. Software

designers should not underestimate the importance of

choice to people. In human history, freedom and choice

have been the stuff of revolutions, so a grass-roots Internet

movement against impolite software is not inconceivable.

If customers prefer polite to impolite software, politeness

may be a critical software success factor. Polite computing

could be taught in system design classes, along with other

system requirements. This would require an information

specification of politeness, such as that polite software

offers rather than takes choice, discloses rather than hides

its social source, helps rather than hinders user choice, and

remembers rather than forgets past interactions. Perhaps a

‘‘seal of politeness’’ could credit applications that satisfy

these specifications. Polite computing can transfer what

society knows to what IS designers do. Software designers

could benefit from one thing that physical society has

learned over two thousand years: that in the long run,

politeness pays.

References

Brown, P., & Levinson, S. C. (1987). Politeness: Some universals in language

usage. Cambridge: Cambridge University Press.

Cooper, A. (1999). The Inmates are Running the Asylum- Why High Tech

Products Drive us Crazy and How to Restore the Sanity. USA.

Dawkins, R. (1989). The Selfish Gene (2nd ed.): Oxford University Press.

Editor. (2002, Sunday, Feb 24, section 4). Technology threats to privacy.

New York Times, pp. 12.

Erickson, T., & Kellog, W. (2000). Social translucence: An approach to

designing systems that support social processes. ACM Transactions on

Computer-Human Interaction, 7, 59 – 83.

Friedman, B., Howe, D. C., & Felten, E. (2002). Informed Consent in the

Mozilla Browser: Implementing Value-Sensitive Design. Paper presented

at the Hawaii International Conference on the System Sciences, Hawaii.

George, J. F. (1996). Computer-based monitoring: Common perceptions

and empirical results. MIS Quarterly, December, 459 – 480.

Goldstein, M., Alsio, G., &Werdenhoff, J. (2002). The media equation does

not always apply: People are not polite to small computers. Personal and

Ubiquitous Computing, 6, 87 – 96.

362 B. Whitworth



Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243 – 1248.

Horvitz, E. (2004). Lumiere Project: Bayesian Reasoning for Automated

Assistance. Available: http://reserach.microsoft.com/*horvitz/lum.htm

[2004].

Langer, E. J. (1975). The illusion of control. Journal of Personality and

Social Psychology, 32, 311 – 328.

Levitt, J. (2001). Internet Zone: Good help is hard to find. Information

Week: Listening Post. Available: http://www.informatonweek.com/835/

35uwjl.htm [2004].

Marckwardt, A. H., Cassidy, F. G., & McMillan, J. G. (Eds.). (1992).

Webster Comprehensive Dictionary: Encyclopedic Edition. Chicago: J. G.

Ferguson Publishing Company.

Miller, C. A. (2004). Human-Computer Etiquette: Managing expectations

with intentional agents. Communications of the ACM, 47, 31 – 34.

Nass, C. (2004). Etiquette Equality: Exhibitions and expectations of

computer politeness. Communications of the ACM, 47, 35 – 37.

Nissenbaum, H. (1997). Toward an approach to privacy in public:

Challenges of information technology. Ethics and Behavior, 7, 207 –

219.

PCMagazine. (2001). 20th Anniversary of the PC Survey Results. Available:

http://www.pcmag.com/article2/0,1759,57454,00.asp [2004].

Poundstone, W. (1992). Prisoner’s Dilemma. New York: Doubleday,

Anchor.

Power, R. (2000). Tangled Web: Tales of digital crime from the shadows of

cyberspace. Indeanapolis: QUE Corporation.

Pratley, C. (2004). Chris_Pratley’s One Note WebLog. http://weblogs.asp.-

net/chris_pratley/archive/2004/05/05/126888.aspx [2004].

Privacy-International. (2002). Big Brother Awards International. Available:

http://www.bigbrother.awards.at/org/ [2002].

Reeves, B., & Nass, C. (1996). The Media Equation: How people treat

computers, television, and new media like real people and places. New

York: Cambridge University Press/ICSLI.

Ridley, M. (1996). The Origins of Virtue: Human Instincts and the Evolution

of Cooperation. New York: Penguin.

Rose, E. (2001). Balancing internet marketing needs with consumer

concerns: A property rights framework. Computers and Society, March,

17 – 21.

Salam, A. F., Rao, H. R., & Pegels, C. C. (2003). Consumer-Perceived Risk

in E-Commerce Transactions. CACM, 46.

Shectman, N., &Horowitz, L. M. (2003). Media inequality in conversation:

How people behave differently when interacting with computers and people.

Paper presented at the CHI (Computer Human Interaction) 2003, Ft

Lauderdale, Florida.

Whitworth, B., & deMoor, A. (2003). Legitimate by design: Towards

trusted virtual community environments. Behaviour & Information

Technology, 22, 31 – 51.

Whitworth, B., Gallupe, B., & McQueen, R. (2001). Generating agreement

in computer-mediated groups. Small Group Research, 32, 621 – 661.

Whitworth, B., Gallupe, B., & McQueen, R. J. (2000). A cognitive three

process model of computer-mediated groups: Theoretical foundations

for groupware design. Group Decision and Negotiation, 9, 431 – 456.

Whitworth, B., & Whitworth, E. (2004). Reducing spam by closing the

social-technical gap. Computer (October), 38 – 45.

Wright, R. (2001). Nonzero: The logic of human destiny. New York: Vintage

Books.

Zigurs, I., Buckland, B., Connolly, J. R., & Wilson, V. (1999). A test of

task-technology fit theory for group support systems. The DATA BASE

for Advances in Information Systems, 30, 34 – 50.

Polite computing 363




