
COMMUNICATIONS OF THE ACM May 2006/Vol. 49, No. 5 93

ILLUSTRATION BY SERGE BLOCH

PERFORMANCE
Because information system performance is

multidimensional, specialist theories of performance dimensions
must be integrated into a model of system design.

SYSTEMTHE WEB OF

Modern information systems face demands so
diverse some computer science researchers postulate
a virtual evolution, where only the fittest applica-
tions survive [4]. What is IS fitness? Successful life,
measured by its continuance, varies from simple
viruses to powerful predators. All are fit but not in
the same way. Indeed, the strongest need not be the
fittest, as one-sided “excellence” can precede extinc-
tion. IS progress seems equally nonlinear, as laptops
deliver less power than PCs for more cost yet sell
well. The variability of modern technology leads
some to argue the need for a multi-goal model of
system performance [2]. Here, we introduce such a
model that applies synthesis-of-form concepts to
information systems [1].

The model derivation described in [12] assumes
system performance affects fitness, along with exter-
nal factors like marketing in IS. It has no time dimen-
sion, describing only performance at a particular
point in time while ignoring biological reproduction

(used by only a few programs, excluding viruses). Per-
formance is defined as “how well a system interacts
with its environment to gain value and avoid loss. The
model suggests that advanced systems include four
elements: a boundary, a supporting internal structure,
output effectors, and input receptors [12]. Likewise,
biological cells have a membrane boundary, internal
support (nucleus), flagella to move (effectors), and
photoreceptors. People have a skin boundary, internal
brain and organs, acting muscles, and sensory input.
Computers have a physical case, motherboard archi-
tecture, printer/screen effectors, and keyboard/mouse
“receptors.” Software has a memory boundary, an
internal program structure, and specialized input/out-
put modules.

Each element plays a natural role in system perfor-
mance and must interact successfully with its envi-
ronment. If we accept that successful interactions
generally maximize the opportunity of the system for
gain and minimize the risk of system hurt, then com-

By BRIAN WHITWORTH, JERRY FJERMESTAD, and
EDWARD MAHINDA

94 May 2006/Vol. 49, No. 5 COMMUNICATIONS OF THE ACM

bining four general elements with two general envi-
ronment interaction types gives eight general perfor-
mance goals of the web of system performance
(WOSP). They are outlined (in parentheses) in the
following list:

Boundary manages sys-
tem entry to enable
useful entry
(extendibility) and
deny harmful entry
(security);

Internal structure con-
trols and sustains the
system to accommo-
date external change
(flexibility) and inter-
nal change (reliability);

Effector manages changes
on the direct environ-
ment to maximize
external effects (func-
tionality) and mini-
mize internal effort (usability); and

Receptor manages sensing of the environment to
enable meaning exchange (connectivity) and limit
meaning exchange (privacy).

The eight WOSP goals
can be illustrated as a web
(see Figure 1) where a
point’s distance from the
center is the degree of
that performance dimen-
sion. This web of perfor-
mance has an area, a
shape, and goal tensions.
The web area represents
the system’s overall perfor-
mance, so a larger area has
more fitness potential.
The web shape is the sys-
tem’s performance profile,
which varies with the
environment; for example, a threat environment
might require more security. The web lines are the
goal interactions, or tensions. One can imagine them
as rubber bands of different tensions connecting the
performance dimensions, so increasing one may sud-
denly pull back another. As Table 1 suggests, none of
the WOSP goals are new to computer science
researchers; what is new is their conceptual integra-
tion into a common framework.

A system’s boundary determines what is allowed to

enter and exit it and can be designed to repel external
threats (security) and accept external opportunities
(extendibility).

Extendibility is a system’s ability to make use of
outside elements (such as the way a car with a tow
hitch might add a trailer and software can have exten-

sions and plug-ins).
Human tool use extends
performance the same way,
and programs can use
third-party plug-ins, given
the equivalent of an open
human hand. However,
for a car to extend itself via
a trailer, its tow hitch must
match the trailer’s link, so
extendibility requires a
known link form. IS open
standards create this bene-

fit and represent the value of open source code. In the
1980s, software businesses focused on copy protec-
tion and were surprised when Netscape made its
source code public yet thrived. It was successful (at
the time) because openness encouraged third-party
development, which increased performance. A similar
argument could explain why the early IBM PC 25
years ago outperformed a more reliable, secure, usable

Apple Macintosh. One
was a propriety black box;
the other had standard
slots for third-party cards.
Extendibility is a critical
factor in IS performance.

Security is a system’s
ability to protect itself
against unauthorized
entry, misuse, or takeover
(the way a car has locks
and keys and applications
have logons and pass-

words). Secure hardware is sealed and tamperproof,
and distributors prefer compiled to interpreted soft-
ware because users cannot alter it. The entry-denial
principle is the same for hardware and software. Virus
and hacker threats make boundary firewalls and
logon checks critical to system survival. A security
breach is a system failure and thus a performance fail-
ure. Security is a key part of IS performance.

A system’s internal structure can be designed to
manage internal changes (reliability) or external
changes (flexibility). Flexibility is a system’s ability to
work in new environments (in the same way tracked
vehicles that operate in difficult terrain are flexible);
similarly, mobile devices can receive signals in difficult

Whitworth fig 1 (5-06)

Reliability

Security

Usability

Flexibility

ConnectivityPrivacy

Functionality

Extendibility

Figure 1. The Web of system
performance dimensions.

Whitworth table 1 (5-06)

Subgoal

Extendibility

Security

Flexibility

Reliability

Functionality

Usability

Connectivity

Privacy

Similar Terms

Openness, interoperability, permeability, compatibility, scalability

Defense, protection, safety, threat resistance

Adaptability, portability, customizability, plasticity, agility, modifiability

Stability, dependability, robustness, ruggedness, durability, availability,
maintainability

Capability, effectualness, usefulness, effectiveness, power, utility

Ease of use, simplicity, user friendliness, efficiency, accessibility

Networkability, communicativeness, interactivity, sociability

Confidentiality, secrecy, camouflage, stealth, social rights, ownership

Table 1. System performance
dimension terminology.

network areas. CSMA/CD (Eth-
ernet) protocols outperformed
more-reliable but less-flexible
polling protocols. Flexible rela-
tional databases displaced more
efficient but less-flexible hierar-
chical and network models. Most
modern software has a prefer-
ences module (such as the Win-
dows control panel) to configure
it for hardware, software, or user
environments. Flexibility is
another critical aspect of IS per-
formance.

Reliability means a system
keeps operating despite internal
changes (such as part failure); a
car, like software, that always
goes is a great thing. Reliable sys-
tems are almost always available,
survive stress or load, and if
affected degrade gracefully rather
than crash catastrophically. In IS,
mean time between failure mea-
sures the probability of failure-
free operation over time. Equally
important is fast recovery,
whether by error code or state
rollback. Computer companies
like Dell Computer that provide
better after-sales support and
warrantees, succeed because reli-
ability is critical to IS perfor-
mance.

System effectors change the
external environment and can be
designed for maximum effect (functionality) or to
minimize the cost of producing that effect (usability).
Functionality (capability) is a system’s ability to act
directly on its environment to produce a desired
change (such as the way a car’s speed changes its posi-
tion and a word processor’s power changes docu-
ments). Focusing on functional requirements
produces feature-laden software that gets the job
done, so the effort to use it is never wasted. People
upgrade for new capabilities, so functionality is
important in IS performance.

Usability is a system’s ability to minimize the rela-
tive resource costs of action (in the same way a usable
car is easy to drive and easy on gasoline). Reduced
instruction set computing outperforms complex
instruction set computing by using less code for the
same work. “Light” software runs well in background
because it uses little CPU/memory. In human-com-

puter interaction, graphical user
interfaces replaced command
user interfaces in the 1980s
because they reduced users’ cog-
nitive effort. In today’s online
world, where unhappy users just
click on to another Web site,
usability is a critical part of IS
performance.

Social interaction, which
adds a social dimension to sys-
tem performance, can both
enable information exchange
(connectivity) and limit it (pri-
vacy). Connectivity is a system’s
ability to communicate with
other systems; for example, con-
nected cars can detect other cars
to avoid collisions, and con-
nected software can download
updates or help people commu-
nicate. We earlier linked actions
to effectors, even though actions
occur in a sensory-guided feed-
back loop. Likewise, we link
meaning to receptors because
receptor processing creates
meaning, even though commu-
nicative acts also require effec-
tors. The communication end
result of meaning comes from
receptors (and the ensuing pro-

cessing) in the same way effectors create the end result
of actions. For modern software, connectivity is criti-
cal to IS performance.

Privacy is a system’s ability to control the release of
information about itself (such as the way a car’s tinted
windows hide the occupants or software lets one
browse the Web anonymously). Confidentiality is the
name engineers give privacy from a software perspec-
tive, rather than from a user perspective. The military
values stealth airplanes for the same reason animals
camouflage themselves. In society, not giving infor-
mation is important because public ridicule or cen-
sure can have physical consequences. In
social-technical environments, privacy is a critical part
of IS performance.

The eight WOSP goals are conceptually modular;
the definitions do not overlap. In theory, any perfor-
mance level on any dimension can combine with any
other dimension (such as the way a sealed and bullet-
proof plexiglass house can provide 100% security but
no privacy). In the practice of design, the dimensions
interact, as all system goals do, because the system

COMMUNICATIONS OF THE ACM May 2006/Vol. 49, No. 5 95

Whitworth fig 2 (5-06)

Fn
High Threat

Low Threat

Average Threat
Fn

Fn

E

E

E

F

F

F

C

C

C

U

U

U

S

S

S

P

P

P

R

R

R

Figure 2. Performance
shapes by threat

environment.

must meet all demands. However, conceptual modu-
larity means there is not necessarily a relationship
between any two such demands that might arise from
their definitions.

PRACTICAL IMPLICATIONS

The WOSP model can be used in system design or
and in system evaluation. While performance can be
considered absolute, the WOSP model views perfor-
mance relative to the environment, so performance
has no “perfect” form. Of the eight WOSP goals, four
are generally success-creat-
ing—functionality, flexi-
bility, extendibility,
connectivity—and four
are failure-avoiding—
security, reliability, pri-
vacy, usability. This is
useful, as environments
can vary:

Opportunistic. Actions
can yield benefits to
systems that are able to
reap them;

Hazardous. Actions can
harm systems that can-
not handle hazards;
and

Dynamic. The effects—loss and gain—of risk and
opportunity of action can change quickly, favor-
ing systems that do the same.

If performance has a shape, as well as an area, dif-
ferent shapes may be more suitable in different envi-
ronments (see Figure 2). The WOSP model helps
developers achieve the performance shape that fits
their environments by allocating weights to the per-
formance dimensions (see Table 2).

In traditional IS development, functionality is the
primary goal, and nonfunctional requirements
(NFRs) are second-rate needs. However, many soft-
ware systems end up with many more lines of error or
interface code than functional code, failing often for
unexpected nonfunctional or quality reasons [3]. If
NFRs can cause system failure, they define perfor-
mance, as well as modify it. In the WOSP model,
functionality differs from other performance goals
only by being more obvious. Poor usability can nul-
lify functionality, just as poor functionality can make
usability irrelevant.

Modern communications technology illustrates
the many dimensions of performance. Cell phones let
people talk anywhere, anytime (flexibility), but must

still be functional (voice quality), usable (keys not too
small), reliable (if dropped), secure (if stolen), extend-
able (earphones, phone covers), connected (recep-
tion), and private (to prevent snooping). Each
criterion may have a different weight, but any of them
might be critical. Ubiquitous wireless software must
flexibly use different devices/networks but also be
resilient to data-entry errors and power failures. It
must be scalable yet secure against virus attack and
connect yet maintain user privacy. An information
system is not high performance if it is:

Ineffectual. Cannot do
the job;

Unusable. Users cannot
make it work;

Unreliable. Breaks down
often;

Insecure. Succumbs to
viruses;

Inflexible. Fails when the
technical or business
environment changes;

Incompatible. Cannot use
standard plug-ins or data;

Disconnected. Cannot communicate; and
Indiscreet. Reveals personal or corporate informa-

tion.

The WOSP model is a useful checklist for new tech-
nology designers; while success needs many causes,
failure may need only one.

The WOSP model suggests that a genuine perfor-
mance advance in one dimension may not succeed if
the advance also significantly reduces other perfor-
mance dimensions. In Figure 1, only a total area
increase is progress, and increasing one dimension at
the expense of another may not produce such an
increase. For example, in 1992, Apple Computer’s
then-CEO John Sculley introduced the handheld
Newton, saying portability (flexibility) was the wave
of the future. We now know he was right, but the
Newton’s small size made data entry difficult, and its
handwriting recognition was poor. The flexibility
advance was neutralized by a usability reduction, and
in 1998 Apple dropped the line due to poor market
performance. Later, when Palm’s Graffiti language
solved the usability problem, the PDA market
revived, though today, PDAs are under threat from
cell phones with better connectivity. The conclusion
is that breakthroughs may require advances on more
than one WOSP dimension.

For new systems, the WOSP begins “slack” and
involves few tensions, so increasing a performance

96 May 2006/Vol. 49, No. 5 COMMUNICATIONS OF THE ACM

Whitworth table 2 (5-06)

Goal

Extendibility

Security

Flexibility

Reliability

Functionality

Usability

Connectivity

Privacy

Performance

Weight %

100%

Detail

Use outside component/data add-ins?

Resist outside attack/take-over?

Predict/adapt to external changes?

Avoid/recover from internal failure?

What task functionality is required?

Conserve system/user effort or training?

Communicate/connect with other systems?

Manage self-disclosure and privacy?

Interact successfully with the environment.

Table 2. System performance
dimension weights.

goal usually also increases overall performance. How-
ever, as systems evolve and the WOSP area increases,
so do goal tensions. As specialty goals pull the system
in different design directions, one purpose can cut
across another [9]; for example, upgrading connectiv-
ity from one-to-one 1G circuit switching to 2.5G
always-on packet switching created security problems
for networked PCs. Likewise, feature creep can result
in complex bloatware that is difficult to use, maintain,
and defend, and unidimensional “progress” can bite
back [10]. The interaction
of performance goals
explains a strange paradox:
that later versions of suc-
cessful products, after
much effort and many
additional features, might
perform less well than the
original.

Developers can expand
the web by “pulling” two
or more sides at once; for
example logon subsystems
(security) might welcome
users by name and recall
their preferences
(increased usability). Flexi-
bility need not deny reliability, nor functionality
reduce usability, nor Internet connectivity abuse pri-
vacy [11]. In the WOSP model, apparent opposites
(such as security and openness) can be reconciled
through innovation.

Reconciling goal conflicts occurs at the intersection
of specialties. Traditional projects define system
requirements by specialty (such as interface and data-
base design) because they require different skills.
Designing for add-ins requires standards knowledge,
while security design requires virus knowledge. The
WOSP model welcomes such goal specialization.
Depending on the project, as many as eight project
specialty teams can design different system layers,
with separate specifications, code, and testing (see
Table 3). However, it also recognizes that specializa-
tion alone, however good, can produce what has been
called the Frankenstein effect [10].

1

This suggests a
design requirement over and above those specified,
namely their innovative integration.

While efficiency increases as specialists specialize,
integration may decrease, and with it system perfor-
mance. Agile and extreme project methods address
this problem by encouraging everyone to be involved

in all aspects of a system’s design. Their popularity and
success suggests integration is as important in system
design as specialization. Integration can be combined
with specialization in two main ways:

Cross-disciplinary integrators. They mediate among
specialties, chair common meetings, reconcile
crossover conflicts, and create synergies; and

Cross-specialist groups. There might be four groups,
one for actions (functionality and usability), one

for interactions (secu-
rity and extendibility),
one for contingencies
(reliability and flexibil-
ity), and one for socia-
bility (connectivity and
privacy).

Designers can expect
advanced new projects to
need more integration
than simple older ones, so
developing complex

social-technical systems may be as much about inno-
vative integration as traditional specialization.

THEORETICAL IMPLICATIONS

The WOSP model addresses a system’s performance
properties, not outside influences (such as market-
ing, politics, and distribution), on system perfor-
mance. System cost is also outside the scope of
WOSP, as it assumes buyers expect to pay more for
more performance. Finally, the WOSP logic assumes
the system “world” is defined at one of four levels:
mechanical, informational, cognitive, and social
[12]. Each depends on the previous one, as software
depends on hardware but also “emerges” with both
greater demands and greater potential. For example,
the social level requires legitimate interaction in
order to vastly increase system productivity, as illus-
trated by cooperative societies [11]. To apply the
WOSP model, the world level must first be defined,
as the model applies to any IS level but not to all at
once. For example, a system may be hardware-reli-
able but software-unreliable; or both hardware-and
software-reliable yet operator-unreliable; or work
reliably with individuals but break down when
scaled to a social level.

System design theories (such as the waterfall
method) suggest ways to achieve known goals. How-
ever, the WOSP model addresses the goals and dis-
covers a web of system performance. When research
specialties (such as security, usability, and flexibility)
develop performance models, they tend to subsume

COMMUNICATIONS OF THE ACM May 2006/Vol. 49, No. 5 97

Whitworth table 3 (5-06)

Goal

Extendibility

Security

Flexibility

Reliability

Functionality

Usability

Connectivity

Privacy

Testing

Compatibility

Penetration

Situational

Stress/Load

Output

User

Channel/Network

Social

System Layer

Import/Add-in

Security/Log-on

Configuration/Control

Fault Recovery

Application

Interface

Communication

Authorization Rights

Analysis

Interoperability analysis

Threat analysis

Contingency analysis

Error analysis

Task analysis

Usability analysis

Network analysis

Legitimacy analysis

Table 3. System performance
design layers.

1Dr. Frankenstein stitched together the “best” of each body part he found in a grave-
yard. The result was a (low-performance) monster.

other goals within their specialty. For example, the
European general security model includes availability,
integrity, reliability, and confidentiality under a gen-
eral security concept.

However, mechanisms that increase fault-tolerance
(reliability) can reduce security but are illogical if reli-
ability is part of security. Reliability and security dif-
fer in the same way the engineers who maintain
society differ from the police who protect it, one aim-
ing to provide services, the other to deny them [6].
Likewise confidentiality (privacy) is not part of secu-
rity, as one can be private and not secure or secure but
not private (such as a prisoner in a jail cell under video
surveillance). So, it is illogical for each specialty to
include the other specialities within itself.

The Technology Acceptance Model (TAM) argued
in 1989 that usability could be as critical as usefulness
in IS system acceptance. It questioned the perfor-
mance value of a powerful system that was too diffi-
cult to use. Yet today, security and privacy criteria
may be more important to Web users than the now-
traditional functionality and usability criteria [8].
One could expand the original TAM theory to make
security part of “usefulness,” as an insecure system is
not useful. However, the same argument could make
usability part of usefulness, so the argument collapses.
Expanding TAM’s usability concept fairs little better.
When usability measures include suitability for task
(functionality) and error tolerance (reliability) [5],
then usability, like security, becomes a confusing
catch-all term for performance. When the proponents
of flexibility suggest that scalability and connectivity
are aspects of flexibility [7], specialist concepts expand
to fill the available theory space and create confusion.
The WOSP approach is not to conceptually expand
but to conceptually contract, or “modularize,” such
concepts as usability, security, and flexibility, placing
them all under the general rubric of system perfor-
mance.

Theorists easily forget how they previously viewed
today’s progress. The Internet was for techno-geeks
until virtual reality became real. Email was socially
inept lean communication until text became rich.
Tim Berners-Lee’s Web idea was ignored by his
employer the European Organization for Nuclear
Research, by the academic hypertext community, and
by Microsoft, before MIT took it up to help create
today’s online society. Cell phones were yuppy toys,
until everyone got one.

These cases, and many more, illustrate that perfor-
mance, and hence progress, is multidimensional. The
Internet provides massive connectivity; text email is
easy to use; the Web is scalable; the cell phone is flex-
ible. Each adds a different web of system performance

factors, so progress may seem unpredictable, but such
variety is the nature of multidimensional progress.
While some view progress as a train moving forward
on a single track, the WOSP model views it as a train
on many tracks, switching among them to increase
the covered area as progress occurs.

Implicit in this model is that today’s trends will not
necessarily be tomorrow’s innovations. A decade ago
multimedia was hot, but Star Trek’s vid-phone,
though technically feasible, is not commercially
viable. Moreover, videoconferencing did not boom,
nor did people take up virtual reality goggles in com-
puter gaming. Instead, games became connected
through virtual social worlds (such as The Sims and
various massively multi-player online role-playing
games). Meanwhile, game editors made games more
extendible, as users could add maps and scenarios, as
in id Software’s Doom WAD files. Progress in one IS
performance dimension it seems tends to be followed
by progress in another.

Experts are, by nature, experts in the past, so the
progress they predict is not always the progress that
occurs. The WOSP model suggests, somewhat coun-
terintuitively, that developing a system’s weaker
aspect(s) may yield greater performance increases
than developing its stronger aspect(s), even though
the latter usually creates its success. If performance is
the WOSP area, the greatest area increase is achieved
by extending the shortest dimension. For example,
perhaps the future of online gaming will involve
exclusive gaming groups (privacy). We (the authors)
are developing a WOSP instrument to help designers
determine a system’s performance profile.

CONCLUSION
If something works, developers and users alike want
to do it again and again. But if software is evolving
the way life is evolving, IS progress will take many
forms. It is interesting that killer applications (such
as email and chat) are functionally simple, at least
initially. Perhaps less capability creates the WOSP
slack needed for all-round performance expansion.
Users not only want functionality, they also want
usability, reliability, flexibility, security, extendibility,
privacy, and connectivity, as all are aspects of perfor-
mance.

As information systems become more complex,
performance-integration issues will become more
critical. An information system is a synthesis of form
in a multidimensional performance space where each
design choice affects each dimension [1]. Researchers
must recognize what designers face: that the system
whole is more than the sum of its parts. Hence
putting only advanced specialists into cross-discipli-

98 May 2006/Vol. 49, No. 5 COMMUNICATIONS OF THE ACM

nary teams may be as useful as putting people who
speak different languages together in the same room.
Cross-disciplinary research without cross-disciplinary
people to translate among specialties is not really
cross-disciplinary. IS academic researchers must
reward generalists who struggle to cross-train, as well
as specialists who struggle to focus; specialized confer-
ences, journals, and departments often do not do this.
Practice and theory are both needed to advance inte-
gration and specialization and to achieve balance and
excellence.

References
1. Alexander, C. Notes on the Synthesis of Form. Harvard University Press,

Cambridge, MA, 1964.
2. Chung, L., Nixon, B., Yu, E., and Mylopoulos, J. Non-functional

requirements in Software Engineering. Kluwer Academic, Boston, 1999.
3. Cysneiros, L. and Leita, J. Non-functional requirements: From elicita-

tion to modelling languages. In ICSE (Orlando, FL, May 19–25).
ACM Press, New York, 2002.

4. David, J., McCarthy, W., and Sommer, B. Agility: The key to survival
of the fittest. Commun. ACM 46, 5 (May 2003), 65–69.

5. Gediga, G., Hamborg, K., and Duntsch, I. The IsoMetrics usability
inventory: An operationalization of ISO9241-10 supporting summa-
tive and formative evaluation of software systems. Behaviour & Infor-
mation Technology 18, 3 (1999), 151–164.

6. Jonsson, E. An integrated framework for security and dependability. In
NSPW (Charlottesville, VA, Sept. 22–25). ACM Press, New York,
1998, 22–29.

7. Knoll, K. and Jarvenpaa, S. Information technology alignment or ‘fit’
in highly turbulent environments: The concept of flexibility. In
SIGCPR (Alexandria, VA, 1994). ACM Press, New York, 1994.

8. Mahinda, E. and Whitworth, B. The web of system performance:
Extending the TAM model. In Americas Conference on Information
Systems (ACIS) (Omaha, NE, Aug. 11–14, 2005).

9. Moreira, A., Araujo, J., and Brita, I. Crosscutting quality attributes for
requirements engineering. In Software Engineering and Knowledge
Engineering (SEKE) (Ischia, Italy, 2002). ACM Press, New York,
2002.

10. Tenner, E. Why Things Bite Back. Vintage Books, Random House, New
York, 1997.

11. Whitworth, B. and deMoor, A. Legitimate by design: Towards trusted
virtual community environments. Behaviour & Information Technology
22, 1 (2003), 31–51.

12. Whitworth, B. and Zaic, M. The WOSP model: Balanced information
system design and evaluation. Communications of the Association for
Information Systems 12 (2003), 258–282.

Brian Whitworth (bwhitworth@acm.org) is a senior lecturer in
the Institute of Information and Mathematical Sciences at Massey
University, Auckland, New Zealand.
Jerry Fjermestad (fjermestad@adm.njit.edu) is an associate
professor in the School of Management of the New Jersey Institute of
Technology, Newark, NJ.
Edward Mahinda (egm3@njit.edu) is a Ph.D. student in
information science in the College of Computing of the New Jersey
Institute of Technology, Newark, NJ.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0500 $5.00

c

COMMUNICATIONS OF THE ACM May 2006/Vol. 49, No. 5 99

WHILE SOME VIEW
PROGRESS AS A TRAIN
MOVING FORWARD ON
A SINGLE TRACK, THE
WOSP MODEL VIEWS
IT AS A TRAIN ON MANY
TRACKS, SWITCHING
AMONG THEM TO
INCREASE THE COVERED
AREA AS PROGRESS
OCCURS.

