
A Logic of Creation in Online Social Networks1

Brian Whitworth1, Lech Janczewski2 and Adnan Ahmad1
1Massey University, Auckland, New Zealand
2 The University of Auckland, New Zealand

1 Whitworth, B., Janczewski, L. and Ahmad, A., The Logic of Creation in Online Social Networks, Accepted in The 2012

World Congress in Computer Science, Computer Engineering and Applied Computing (WORLDCOMP’12), Las Vegas,

Nevada, USA, July 16-19, 2012

Abstract - A community is a social entity that by norms, laws

or ethics grants its citizens rights - social permissions to act. It

does so to help itself, as a community that prospers helps its

members. Online social networks are computer-based

communities whose social requirements are not too different

from any other. Access control in these networks requires

some logical foundation to build upon. Without an agreed

logical basis to distribute social rights, current access control

models are based on intuition, experience or trial and error.

This paper suggests anonine entity creation logic based on the

socio-technical approach – use the knowledge of physical

society as the basis of information rights model for online

communities. Social axioms give a theoretical base for rights

analysis that could not only satisfy technical requirements like

efficiency but also social requirements like fairness.

Keywords: social computing, socio-technical, access control,

security, social network

1 Introduction

 The last decade has seen extreme multi-user systems

emerge – online social networks (OSN) where millions of

users share billions of resources and grant each other access

rights (Carminati, 2009). A social network is a type of socio-

technical system (STS), which is a social system operating

upon a technical base (Whitworth, 2009), e.g. wikis, social

media, e-trade or chat. Every STS has both social and

technical requirements, so can fail by social or technical error,

e.g. by allocating permissions unfairly or inefficiently.

Online access to resources and information is managed

through an access control system (ACS), which restricts who

can access what based on a permission matrix which for

friend interactions increases geometrically not linearly with

group size. So for hundreds of millions of people, the possible

connections are astronomical. Each account also adds

hundreds or thousands of photos or comments a year and each

user wants the sort of control over their domain previously

reserved only for system administrators. With the world

population at seven billion and growing, if Facebook's current

800 million active accounts is just the beginning, matrix

access methods may be ending their useful life.

In traditional ACS, access is granted to predefined users,

but OSN profiles can be created by users new to the system

and rights allocation is over constantly new objects. Currently,

access control in social networks is based on designer

intuition, experience or even trial and error, with no agreed

common base. The base proposed here is social requirements.

As social networks are here to stay and growing in number

and size, a common model of distributed rights allocation can

identify socio-technical design patterns (Alexander, 1964).

Privacy is one OSN social requirement, as connecting to

others raises privacy concerns (Simpson, 2008). People want

to contribute personal stuff to online social networks without

worrying about its unauthorized disclosure (Ahmad and

Whitworth, 2011). Another is Locke's idea that one should

own what one creates, whether a book, a painting or an online

photo (Locke, 1975). If so, everything posted on an OSN

should be owned, and conversely if people own their posts,

they should manage their access control. Access control in

OSNs today is more about access than control because people

want to share as well as keep private. Essentially, if people

don't own the resources they contribute, why bother to add

them at all? Why do work for someone else to get the result?

If people don't contribute to an STS there is no user

community and it fails socially. Ownership of newly created

online objects is critical to OSN success for social reasons.

The aim is a system that works both in technical practice

(efficient, consistent and reachable) and in social practice

(fair, productive and understandable). The access control

logic outlined here could generalize to any socio-technical

system.

2 Requirements

 A socio-technical system is a social system on a technical

base, as a socio-physical system is a social system on a

physical base. Socio-technical design (Mumford, 1995; Porra

and Hirscheim, 2007) involves technical and social

requirements, to model not just what can be done but what

should be done. Social requirments, usually applied to

workplace management, are here applied to software design.

Social synergy is people working together to increase each

other's outcomes (it isn't just people adding efforts, say to lift a

heavy log together). Communities that enable positive synergy

will attract citizens while negative synergy will repel them,

e.g. the Berlin wall was a short term physical attempt to block

a long term social synergy effect. People move to societies

where synergy increases productivity. The same occurs online

but much faster, as a Facebook or Gmail "citizen" need only

set up a new identity to "emigrate". A few clicks is all it takes

to leave one application "country" for another. Social

networks ignore social requirements at their peril, as without a

citizen base how can they survive?

An access control system needs to satisfy:

1. Technical requirements.:

a. Efficiency. To reduce complexity to support use factors

like response delay (Ahmad and Whitworth, 2011).

b. Consistency. To compile, code must be logical.

c. Reachability. To not hang, the logic must be reachable.

2. Social requirements.

a. Ownership. To reduce resource conflict and allow trade.

b. Freedom. To increase participation we must be free.

c. Fairness. Fairness is accountability for ones acts on

others. The goal of justice systems is just that, not

equity (Rawls, 2001). People tend to avoid unfair

situations and even prefer fairness to personal benefit

(Adams, 1965).

d. Privacy. Without control over how it is seen, one will

not post personal information online.

e. Transparency. Is a citizen's right to know the social

rules affecting them. Physical societies make laws

public, e.g. road rules, so online access control systems

should be the same.

Link operations (Whitworth and Bieber, 2002), local

administration (Ahmad and Whitworth, 2011) and rights

reallocation (Ahmad et al. 2012) are discussed elsewhere.

This paper now applies the socio-technical approach to the

logic of online creation.

3 A rights analysis

Access control in traditional computing involves three

basic entities, i.e. subjects, objects and rights. In online

communities the entities remain the same but their semantic

and interpretation changes based on the social interaction.

3.1 Social Actors

A persona is an information entity representing a person,

e.g. an avatar, logon profile, WebMail account, wall or

channel. An online social system thus constitutes social actors

who interact via personae (Whitworth et al. 2006). This paper

prefers the term “actors” for social interactions, rather than

“users”, for several reasons. First, a user is characterized in

relationship to a particular application, whereas a social actor

can participate in many application setting (Kling et al. 2003).

Second, the term “user” generally implies a single relationship

to a system while social actors have multiple relationships

(Kling et al. 2003). Finally, given multiple relationships in

multiple settings, an actor may have conflicting or ambiguous

demands that require a choice over the actions they perform

(Lamb and Kling, 2003).

3.1.1 Who owns the persona?

In the physical world, freedom is the right to control one's

body, to not be a slave to another. If freedom online is the

right to control one's online body, or persona, one should be

able to edit or delete it, yet many systems don't permit this

(Lessig, 1999). A system offers freedom if an actor can

remove themself from it, e.g. delete a Facebook wall or

YouTube channel with nothing left behind. The social logic is

that one owns oneself online, i.e. an online persona does not

belong to a system administrator . If someone else can control

my persona, I am an online slave. As society can imprison

criminals, freedom is a granted right, i.e. a privilege, but

modern societies grant lawful citizens freedom, giving the

access control operational principle:

P1. A persona should be owned by itself.

Display grants another the right to view an entity. Privacy, a

persona's right to control its display, gives the access control

operational principle:

P2. Displaying a persona requires its consent.

This social pattern is also general, e.g. in a Facebook or

Linkedin registration creates a persona but displaying it to

other registrants is by consent. As the SA owns the public list,

to put a persona on a public view list needs the permission of

both its owner and the list owner, jointly allocated. Table 1

summarizes these persona access rights.

TABLE 1. PERSONA ACCESS RIGHTS.

Persona View Delete Edit Display Ban Allocate

SA ½

Owner ½

3.2 Objects

Objects as passive entities are subject to operations. They

convey meaning, i.e. evoke cognitive processing, e.g. a photo.

Objects can be of two types, items and spaces.

3.2.1 Items

An item is a simple object with no dependents, like a board

post. It can be deleted, edited or viewed. If the system object

hierarchy were a tree, its leaves would be items. Items can be

of different types, e.g.:

1. Comment: An item whose meaning depends on another,

e.g. "I agree" makes no sense without a source item.

2. Message: An item with sender/receiver, e.g. an email.

3. Vote: An item that conveys a choice position to a response

set.

3.2.2 Spaces

As leaves need branches so items need spaces to carry

them, e.g. an online wall that accepts photos or notes. In

information terms, a space is a complex object with dependant

entities. It can be deleted, edited or viewed as an item can, but

can also can contain other objects, e.g. a bulletin board. A

space is a parent to any child entities it contains, as they

depend on it to exist. Deleting a space deletes its contents for

that reason, e.g. deleting a board deletes its posts. The move

operation changes the parent space of an object. Allowing

spaces improves access efficiency, e.g. one can deny access to

every object in a space by denying entry to the space, giving

the principle:

P3: Every entity has a parent space, up to the system space.

An access control system can assume that every entity has a

parent space (except for the system itself). Its ancestors are

the set of all spaces that contain it, up to the system itself, as

the first ancestor. Equally the offspring of a space are any

child objects it contains and any other derived children.

3.3 The information system as an entity

In this model, the information system itself is an entity that

can be acted upon by its owner, or SA, e.g. Wikipedia has

Jimmy Wales. While control systems make decisions, and

decision support systems recommend them, access control

systems merely specify allowed acts, i.e. give choices.

Ownership requires that all use rights be set, giving the access

control operational principle:

P4. All entity use rights must be allocated.

Unless all use rights are allocated, an access control system

has no basis to operate.

3.4 Operations

Operations are actor initiated methods that target

information entities subject to access control. Passive

operations are null acts that don't change their target, e.g.

view. To be accountable for an object one must be able to see

it, i.e. use rights imply view rights, giving the access control

operational principle:

P5: Any right to use an object implies a right to view it.

Communicative acts like email involve sender and receiver

actors, i.e. two parties. Social communication is considered a

joint act either party can negate, e.g. "Can I talk to you?" is

asking permission to communicate. Legitimate communication

first opens a mutual consent channel then sends messages

(Whitworth and Liu, 2009). Communication fairness gives the

access control operational principle:

P6: A communication act requires mutual consent.

Email is losing ground to systems that respect

communication mutuality for this reason. Its technical design

ignored social needs, and so despite the best technical efforts

of filters it is slowly being consumed by spam and giving way

to more legitimate communication forms (Whitworth and Liu,

2009). Socio-technical systems are only socially sustainable if

they are legitimate by design (Whitworth and deMoor, 2003).

3.5 Rights

Online rights management is about defining legitimate

choices – individuals still choose what they do. Access control

defines what online actors can do not what they must do. A

right is a system permission for actor (A) to apply operation

(O) to entity (E), or in formal terms:

Right = (Actor, Entity, Operation) = (A, E, O)… (i)

The actor is any social entity, e.g. a persona. The entity can be

an object, a social entity or a right, so a persona can act on

itself. The operation is any that is available to that entity.

3.5.1 Roles

Roles like parent, friend or boss are used in norms and

laws to simplify rights management, e.g. owner as the generic

party with the right to use an owned object. In online access

control, roles both simplify rights management and improve

actor acceptability. Roles are loosely seen as an actor set, but

here are an actor set in a rights statement, e.g. the friend role is

a set of people in the context of stated permissions. So roles

are here generic rights, giving the access control principle:

P7: A role is an entity right expressed in general terms.

Roles are the variable statements of social logic, e.g. the

owner role is:

RoleOwner = (Actor , EntityAny , OperationAll)…(ii)

Setting an actor to own EntityAny is to allocate the unspecified

Actor pointer to them. Roles reduce right management

complexity and are flexible enough to accommodate social

variety, e.g. the friend role lets one add or remove the others

who can view photos posted on a social network wall:

RoleFriend = (Actor , EntityWall , OperationView)… (iii)

To friend another adds them to a role actor set and to unfriend

removes them. To "friend" doesn't change the target persona

but the actor's role, so it is really an act upon a role. This gives

the operational principle:

P8. A space owner can ban a persona without their consent.

3.5.2 Meta-rights

If a right is an information entity, it can also be acted on.

Operations upon rights (as opposed to entities) are here called

allocations. Changing rights implies rights to change rights i.e.

meta-rights. A meta-right is the right to re-allocate a right, e.g.

a tenant renting an apartment has use rights for a time but the

landlord owner keeps the meta-rights. For practical reasons, a

meta-right is also classed as a right, giving the access control

operational principle:

P9. A meta-right is the right to allocate any entity right,

including itself.

In formal terms:

RightMetaRight = R (Actor, Right, OperationAllocate)…(iv)

where the entity acted on is a right.

4 A logic of creation

To create an information object from nothing is as

impossible in an online space as it is in a physical one.

Creation cannot be an act upon the object created, as it by

definition doesn't exist before it is created. Likewise, an actor

can't request an access control permission to create for an

object that doesn't exist yet. Also, to create an information

object it's attribute structure must already be known, i.e. exist

within the system. To be consistent, creation is an act upon the

system, or in general, an act on the space containing the

created object. This gives the operational principle:

P10. Creation is an act on a space, up to the system space.

It is well defined as a system always has a space, as the system

itself is the first space. Creating is also an act upon a space

because it changes the space, as it as now contains the created

object. If creation is always an act upon a space, it follows that

the right to create in a space belongs to the space owner:

RightCreate = R (OwnerSpace, Space , OperationCreate)… (v)

This allows an access control system to be initialized with

a system administrator owning a system space with all rights,

including create rights, that then evolves into a community as

the SA give rights away. To create a community of others, one

must give rights away (Gaaloul, Schaad, and Flegel, 2008).

The logic can generalize to any space - the right to create

in the space is initially allocated to the space owner who can

allocate it to others who enter the space. So to create a board

post, YouTube video, blog comment or conference paper

requires the board, video, blog or conference owner's

permission. How create rights are allocated is given in more

detail later, but space owners can vary (Lessig, 1999):

1. Object type. The space owner may limit object type, e.g. in

a conference, e.g. the right to create paper in a track isn't

the right to create a mini-track.

2. Operations. A comment isn't usually editable once posted

but ArXiv lets authors edit publications.

3. Exclusivity. Journals give authors exclusive edit rights

while Wikipedia lets anyone edit any creation.

4. Visibility. Bulletin boards let you see what others submit

but conferences don't until the review phase is done.

5. Defaults. Space owners set created entity default values.

In all the above, transparency is the right to know the creation

"deal" in advance. A space owner can delegate all, none, or

some of their creation rights, but receivers also have the right

to know what they are getting, giving the access control

operational principle:

P11. An actor can view any rights that could apply to them .

Successful socio-technical systems like Facebook, YouTube

and Wikipedia, all do this.

4.1 Creator Ownership

Object creation is a simple technical act but a complex

social one, as a newly created entity's rights are initially

unallocated. Locke argued that creators owning their creations

is fair and increases prosperity, whether it is a farmer's crop, a

painter's painting or a hunter's catch (Locke, 1975). A

community that grants producers the right to their products

produces more, while there is no incentive to create by effort

for others to own. This gives the access control principle:

P12. The creator of new entity should immediately gain all

rights to it.

This conveniently resolves the issue of how to allocate the

rights to newly created object - they are allocated to its

creator, including meta-rights. Create then immediately gives

the right to edit, which is useful as create sets no new object

values. Yet P12 isn't what must happen - a technical program

can create an information object however it likes, e.g. give its

ownership to the system administrator as in traditional

applications. Creator ownership is a requirement for social

success not a technical necessity.

4.2 Role Allocations

When an entity is created the following roles can be

assigned:

1. Owner role: Given meta-rights to the entity.

2. Ancestor role: As a created entity becomes part of the

space it is created in, it should be visible to its parent space

owner who is accountable for their space. Fairness entitles

a space owner to view any creation change they allowed.

Privacy does not contradict this, as is the right to limit the

display of personal attributes, not of objects owned. By the

same logic, an entity should be visible to all its ancestors,

giving the operational principle:

P13. A space owner should have the right to view any

offspring.

with the ancestor role:

RoleAncestor = (AncestorOwner , Entity , View)…(vi)

A posted conference paper could be visible to its

conference, track and mini-track chairs, but not to other

track or mini-track chairs. Ancestors may receive

notifications of new additions.

3. Offspring role: Consistency requires that an entity has

already entered its parent space, so can view whatever is

displayed in it, i.e. children can always see the space they

are in. By extension, they can also enter any ancestor space

as they are already in it, giving the access control

operational principle:

P14. An entity owner has the right to enter its ancestors.

e.g. adding a paper to a mini-track should let one enter the

mini-track, track and conference spaces to view whatever

is displayed there. The offspring role is:

RoleOffspring = (OffspringOwner , Space , Enter)…(vii)

4. Local public role: A space owner can create and own a

local public role, to define what others can see or do in the

space:

RoleLocalPublic = (LocalPublic , Space , OperationAny)…(viii)

Actors in a local public role can be set manually, as friends

are allocated, or set to a general public list given by the

system.

5. Sibling role: Owners of other entities in the same space,

may get view rights, e.g. that one can only view items in a

space after adding one oneself, i.e. visibility is allocated to

siblings. However authors who submit conference papers

get no such right to view siblings, i.e. see what others have

submitted to the same track.

A space owner can grant any right they own to their local

public subject to conditions, e.g. a Wikipedia create condition

is to allow public edits.

4.3 The create process

Technically, creating an entity is simple – a program just

creates it, but socially adding to another's space is not a one-

step act, e.g. adding a YouTube video involves:

1. Registration. Creating a YouTube public role persona.

2. Entry. YouTube allows public entry, if not banned.

3. Creation. YouTube lets the public role upload videos.

4. Edit. One gets edit right to title, notes and properties.

5. Submit. To display to the public view.

6. Display. The space displays it so the public sees it.

In this model, YouTube gives create video rights to anyone

who has registered in the public role (1). They enter the

YouTube space (2) and create a video by uploading or

recording, which they own (3). They can then in private view

it and edit details (4). At this point, the video is visible to

themselves and administrators but not to the public, and they

can still delete it. The video is then submitted to YouTube for

display to its public (5), which usually occurs quickly as

YouTube delegates display rights (6). Note that to create, edit

and display a video are distinct steps. As YouTube only

delegated display rights, it can still reject videos that fail its

copyright or decency rules by un-delegation. This rejection is

not a delete, as the video owner can still view, edit and

resubmit it.

In contrast, a purely technology based rights allocation

might let space owners delete items at will. Ignoring creator

ownership would discourage social participation and the

system might fail socially. Modeling the display of an object

in a space as a social transaction between its creator and the

space owner allows the sharing of control in many ways, from

laissez-faire to dictatorial control. What works can then be

decided by the social outcome.

The above logic generalizes easily, e.g. a YouTube video

is itself a space with dependent comments and votes.

YouTube is consistent and fair as the same principles apply as

the video creator becomes a space owner. They can choose to

allow comments or votes on their video, i.e. they can grant

rights to their domain space, just as Facebook citizens do.

Socio-technical systems succeed by allocating social rights

legitimately.

Rights logic is powerful but complex, as people can form

groups, objects can contain other objects and rights can

overlap and contradict, e.g. free speech is not the right to

defame. A socio-technical designer might wonder, if even

legal theorists can't agree on all social rights, how can we

cope? Yet some justice is always better than none, whether

online or off. To do nothing until perfect justice is defined is

not how social evolution occurs.

5 Theoretical analysis

The efficiency, reachability and consistency of the

proposed logic is analyzed in this section.

5.1 Efficiency

In OSN, access control models face a serious scalability

problem, as potentially many more subjects must be mapped

to many more resources, regardless of whether a subject has

access rights over a resource or not. We can use u × o × r

matrix MAT to estimate the relations between users, objects

and permissions, where u is the number of users, o is the

number of objects and r is the number of access permissions.

The authorization matrix

|MAT|=subject × object × access … (ix)

is therefore huge and diverse (Kerschbaum, 2010). One often

proposed answer is role-based access control (RBAC)

(Sandhu et al., 1996), which succeeds in reducing complexity

(Lee et al., 2006; Wu et al., 2008) by dividing the

authorization matrix using a level of indirection via the role

concept:

subject × role; |MAT|=role × object × access … (x)

However for an OSN with millions of users, the number of

access control entries still remains a bottle neck, even with

RBAC, e.g. currently Facebook reports over 750 million

active users with 90 resources added by each every month2. In

a traditional DAC access control model, this is over 151

trillion access control entries per month, where every request

must traverse the whole list. And the condition with RBAC is

even worse as implementing ownership with RBAC is more

expensive (Sandhu and Munawer, 1998). The proposed model

reduces the authorization matrix, as now the visibility of

objects is not across the whole system but limited to the social

circle of each social owner. This limits actors having potential

access over resources:

… (xi)

The authorization matrix for objects of one owner then

reduces by

Potential Users × Local Roles; Objects × Owner … (xii)

And the authorization matrix for the whole system under the

proposed model, using local roles (LR) and permissions for a

space is given by

where N is number of users present in the whole system and n

is the number of local roles, objects and permissions present

in the Owner Space.

These settings give the proposed model fewer access

control entries. In the above case, the number of entries is

reduced from 151 trillion to 25 trillion. Figure 1 shows the

number of access control entries generated by user number for

a fixed object contribution in the two cases.

Fi

Figure 1. Access control matrix magnitude for different models

5.2 Reachability

For reachability, suppose that Alice creates one object o1

in David space and one object o2 in her own space. She then

2 Facebook statistics, http://www.facebook.com/press/info.php?statistics .

assign Greg and Frank the edit rights over o1 and o2, and

assign Eric, Carl and Bob the view rights over o1 and o2.

Further suppose that Bob creates a child object o3 dependent

on o2 and gives its view rights to Carl. The access control

model instance depicting this scenario can be seen in Figure 2.

Reachability (Bertino, 2003) is the ability to determine

whether a certain authorization can raise the condition of

conflict with another authorization in the system. It is the state

which can occur when one authorization can lead to another

and the second authorization is not valid under the current

state. It can be categorized into three classes: a) a negative

authorization can be derived from a positive authorization, b)

a positive authorization can be derived from a negative

authorization, and c) a positive authorization can be derived

from a positive authorization. First and second reachability

type can cause conflict in the system and shows that the model

is not stable under the current state. Third type does not offer

any serious concern but gives insights about the behavior of

any authorization grant. Reachability is a mean to determine

the effect of granting an authorization and can assist the

system administrators to specify the authorization in a well-

defined manner.

Formally, reachability can be defined as a condition if an

authorization Auth (X1, X2… Xn, +) can be reached from

another authorization Auth (Y1, Y2… Yn, -), and both of the

authorizations are not in the same authorization scheme. The

above three classes can be reduced to the Boolean formula

whether a) Auth (S: U/ UR/ GR, O :o, R:Ri , ϒ:+) ← Auth (S:

U/ UR/ GR, O :o, R:Rj , ϒ:-), b) Auth (S: U/ UR/ GR, O :o,

R:Ri , ϒ:+) → Auth (S: U/ UR/ GR, O :o, R:Rj , ϒ:-), and c)

Auth (S: U/ UR/ GR, O :o, R:Ri , ϒ:+) ← Auth (S: U/ UR/ GR,

O :o, R:Rj , ϒ:+).

Following the model and its authorization state presented in

figure 2, some conclusions can be drawn.

It is clear from constraints #c3 and #c1 that (U: #8, O : #10,

R: #12, ϒ: -) cannot be reached from (U: #8, O : #10, R: #11,

ϒ:+).

Using the constraint #c2, the derivation tree of Auth (S : #ar4

,O : #10, R : #13, ϒ: +) contains Auth(U: #4, O : #10, R: #11,

ϒ: +), so Auth(U: #4, O : #10, R: #11, ϒ: -) cannot be

reached using the same authorization tree.

The Auth (U: #6, O : #10, R: #11, ϒ:+) can be reached from

the derivation tree of Auth (S : #ar3 ,O : #10, R : #12, ϒ: +)

using constraints #c3 and #c1.

5.3 Consistency

An access control model is considered consistent (Bertino,

2003) if there is at least one instance of that model satisfying

all the specified constraints. Consistency is useful to analyze

the model in terms of authorization granted to particular user

and its allocation in various roles. Consistency of a model can

be accessed a) if some role A is higher than role B in

hierarchy, then the rights allocation to B is a subset of rights

allocation to A, the same rule can be stated as if higher rights

are allowed then lower rights are also allowed to a user, b) by

not authorizing lower rights to role A means denying of higher

rights to the same role, c) after the reallocation of some rights,

the new recipient and the old holder of rights should not have

the same set of rights.

Formally, an access control model is considered consistent

if an instance I of that model satisfies I → Constrainsts. The

consistency problem can be reduced to satisfy a) Auth (R, O,

X2… Xn, +) Auth (R’, O’, X’2… X’n, +) iff R >R’, b) iff Auth

(X1, X2… Xn, +) > Auth (X’1, X’2… X’n, +) then not_Auth (X’1,

X’2… X’n, +) → not_Auth (X1, X2… Xn, +) and c) Auth (Old,

X2… Xn, +) ≠ Auth (New, X’2… X’n, +).

Following figure 2, Auth (U: #6, O : #10, R: #11, ϒ:+) is a

subset of (U: #6, O : #10, R: #12, ϒ:+), as R:#11 is a subset

of R:#12, and (U: #6, O : #10, R: #12, ϒ:+) is a subset of (U:

#6, O : #10, R: #12, ϒ:+), as R:#12 is a subset of R :#13.

The model in figure 2 is static depicting only one scenario, but

its dynamic nature for supporting the rights re-allocation can

be seen from Auth (S : Old, O: o, R:X) < Auth (S : New, O: o,

R:X’), Auth (S : Owner Secondary, O: o, R:X) < Auth (S : Owner

Primary, O: o, R:X’) and Auth (S : Delegator, O: o, R:X) < Auth

(S : Delegatee, O: o, R:X’).

6 Conclusion

Online social networks cannot prosper without user

participation. If the Internet is to be a global community, it

must agree on a consistent logic of online social rights. This

paper suggests an access control framework to meet social

demands like creator ownership and technical demands like

efficiency. This progress is already happening in OSNs, but

what is proposed here is not just adding some rights to some

code, but an access control module consistently managing

social rights within the security kernel.

The next project phase is to integrate ownership logic,

distributed control, rights reallocation in an efficient and

consistent access control model and trial it as a plugin for an

NSF granted open knowledge exchange (OKE) system. It will

also generate human readable reports to notify actors of rights,

i.e. be transparent. Access control offers a social “road code”,

to reduce unsustainable social interactions, to increase social

trust and synergy, to reduce social errors and conflict, and to

reduce community governance overheads. A socio-technical

systems must be socially valid as well as technically efficient

to sustain over time.

Acknowledgement

This work has been sponsored by National Science

Foundation (NSF), USA, under award number 0968445.

“OKES: An open knowledge exchange system to promote

meta-disciplinary collaboration based on socio-technical

principles”.

7 References

 Adams, J. (1965). Inequity in Social Exchange. In L. Berkowitz,

Advances in Experimental Social Psychology (pp. 267-299). New

York: Ed. Academic Press.

Ahmad, A., & Whitworth, B. (2011). Access Control Taxonomy for

Social Networks. International Conference on information

assurance and security, IAS'11.

Ahmad, A., & Whitworth, B. (2011). Distributed Access Control for

Social Networks. International conference of information assurance

and security, IAS'11.

Ahmad, A., Whitworth, B., & Janczewski, L. (2012). Logic of Rights

Reallocation in Social Networks. IFIP International Information

Security and Privacy Conference.

Ahmad, A., Whitworth, B., & Janczewski, L. (2012). More Choices,

More Control: Extending Access Control by Rights Reallocation.

Submitted in International Conference on Trust, Security and

Privacy in Computing and Communications

Alexander, C. (1964). Notes on the Synthesis of Form. Cambridge:

Harvard University Press.

Bertino, E. and Catania, B. and Ferrari, E. and Perlasca, P. (2003) A

logical framework for reasoning about access control models, ACM

Trans. Inf. Syst. Secur. 6 71-127

Carminati, B., Ferrari, E., Heatherly, R., Kantarcioglu, M. and

Thuraisingham, B. M. (2009). A semantic web based framework for

social network access control. SACMAT, (pp. 177-186).

Gaaloul, K., Flegel, U., & Schaad, A. (2008). A secure task

delegation model for workflows. International Conference on

Emerging Security Information, Systems and Technologies.

Kerschbaum, F. (2010) An access control model for mobile physical

objects, Proceeding of the 15th ACM symposium on Access control

models and technologies SACMAT.

Kling, R., McKim, G., & King, A. (2003). A bit more to it: Scholarly

Communication Forums as Socio-Technical Interaction Networks.

Journal of the American Society for Information Science and

Technology, 54(1), 47-67. doi: 10.1002/asi.10154

Lamb, R., & Kling, R. (2003). Reconceptualizing users as social

actors in information systems research. Mis Quarterly, 27(2), 197-

236.

Lee, H. Lee, K. and Chung, M. (20006) Enterprise application

framework for constructing secure RFID application, Proceedings of

the 1st International Conference on Hybrid Information Technology.

Lessig, L. (1999). Code and other laws of cyberspace. New York:

Basic Books.

Locke, J. (1975). An essay concerning human understanding. Oxford

University Press.

Mumford, E. (1995). Effective Systems Design and Requirement

Analysis, Information System Series, Palgrave Macmillan.

Porra, J. and Hirscheim, R. (2007) A lifetime of theory and action

on the ethical use of computers. A dialogue with Enid Mumford,

JAIS, vol. 8, no. 9, pp. 467–478.

Rawls, J. (2001). Justice as Fairness. Cambridge: MA: Harvard

University Press.

Sandhu R. and Munawer, Q. (1998) How to do discretionary access

control using roles, In Proceedings of the Third ACM Workshop on

Role-Based Access Control (RBAC 1998).

Sandhu, R. Coyne, E. Feinstein, H. and Youman, C. (1996) Role-

Based Access Control Models, IEEE Computer 29(2).

Simpson, A. (2008). On the need for user-defined fine-grained access

control policies for social networking applications. Workshop on

Security in Opportunistic and social networks.

Whitworth, B., and deMoor, A. (2003). Legitimate by design:

Towards trusted virtual community environments. Behaviour &

Information Technology, vol. 22, no. 1, 31-51.

Whitworth , B., & Bieber, M. (2002). Legitimate Navigation Links.

ACM Hypertext 2002, Demonstrations and Posters, (pp. 26-27).

Whitworth, B. (2009). The social requirements of technical systems.

In B. Whitworth, & A. De Moor, Handbook of Research on Socio-

Technical Design and Social Networking Systems. Eds. Hershey, PA:

IGI.

Whitworth, B., & Liu, T. (2009). Channel email: Evaluating social

communication efficiency. IEEE Computer.

Wu, M. Ke, C. and Tzeng, W. (2008) Applying context-aware

RBAC to RFID security management for application in retail

business, Proceedings of the IEEE Asia-Pacific Services Computing

Conference.

Figure 2: Access control Model Instance and its authorization set

