
More Choices, More Control:

Extending Access Control by Meta-Rights Reallocation

Published as: A. Ahmad, B. Whitworth and L. Janczewski, More Choices, More Control: Extending Access Control by Meta-

Rights Reallocation, International Workshop on Trust, Security and Privacy in e-Government, e-Systems & Social

Networking (eGSSN-12), in IEEE International Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom 2012), Liverpool, United Kingdom, June 25-27, 2012

Adnan Ahmad, Brian Whitworth
Massey University, Auckland, New Zealand

Lech Janczewski
The University of Auckland, Auckland, New Zealand

Abstract— Online Social Networks (OSN) are platforms that

let users build relationships by interacting with each other and

adding objects. They differ from simple technical systems in

having to satisfy social as well as technical requirements, so

OSN access control is both more complex and more subtle than

traditional. Currently, it is managed by local management of

individual domains and local roles like friend. But making

friend gives them rights, raising the issue of meta-rights, the

right to issue a right. As user move from friend dyads to

groups to communities, a systematic scheme to handle meta-

rights (e.g. transferring, delegating, multiplying and dividing

rights) is required. This paper outlines a general model to

manage meta-rights for OSN in particular and socio-technical

systems in general. The model's validity derives from socio-

technical design, where social requirements like ownership and

fairness give technical axioms.

Keywords – Rights reallocation; multiple ownership;

transfer; delegation; rights division, social networks;

I. INTRODUCTION

Socio-technical systems today represent a subtle but
profound shift of software towards becoming more sociable
[1]. They arise when social interaction is mediated by
information technology rather than the physical world [2].
During the last decade, we have witnessed the emergence of
online social networks (OSN), where millions of users
interact with each other to share billions of resources [3].

In computing systems, managing resources is done by
access control, which grants authorized users permissions to
act upon information objects. Every computer application
has an access control system (ACS) but its role has changed
as computing has evolved. The traditional security aim was
to prevent unauthorized user access to the system as a whole,
to avoid system failure or data theft. Today, each individual
has the same concerns, e.g. privacy as the theft of personal
data. A social "error" gives public outrage and rebellion. The
community fails not the software, but the effect is the same -
the system doesn't work and the code doesn't run. Access
control is critical to social networks because even one access
mishandling can cause a community to reject a site, as loss of
privacy can result in family feuds, marriage breakdowns,
spam, scams and even physical attacks [4].

Online communities where users share and talk about
personal posts need a richer rights set than traditional read
and write operations. OSN now let book authors launch
marketing campaigns, companies recruit employees, people
propagate visions and celebrities run fan clubs. Such acts
require many users to share access to many objects,
including the persona itself. Systems with only basic access
control struggle to meet such social needs [3], e.g. for an
ACS to manage many people writing a paper who share
rights, to reallocate the original creator's rights needs meta-
rights logic. No current ACS model for OSN covers the
meta-rights of transferring, delegating, multiplying and
dividing rights.

Our previous works [5-8] discuss how basic rights can be
legitimately incorporated in access control. This paper does
the same for meta-rights. It again uses the socio-technical
approach, to define social requirements first. This ensures
that technical design doesn't impede social needs, i.e. it
avoids a socio-technical gap. The technical design may also
support or enhance social rules and needs [9].

This paper is organized as follows: section II discusses
related work. Section III sketches the requirements, section
IV outlines the core access control model, section V
formalizes the meta-rights model, and section VI concludes.

II. RELATED WORK

In traditional access control models, only delegation has
got some attention but other modes of reallocation are hardly
explored. Traditional models support three types of rights
delegation: machine to machine, user to machine and user to
user. Machine to machine delegation is the secure
authorization of one object to act on the other’s behalf [10].
User to machine delegation is when a user needs to securely
authorize a system to access resources on his behalf, plus the
ability to terminate the delegation [11]. Finally, there is user
to user delegation, as users delegate roles to others [12].
Such traditional access control models cannot be used for
OSN because they:

• Map every user to every resource in the system, and
support system-wide roles, while OSN objects have
local visibility only as well as support user oriented
social circles.

http://scim.brad.ac.uk/~hmibrahi/TrustCom2012/

• Assume single ownership of objects, whether a person
or an organization (no multiple ownership).

• Consider delegation as a right moving from one
person to another. But OSN access control works with
local autonomous domains, so is domain based rather
than role based, i.e. privileges are associated with
objects not users.

A purely technical analysis of RBAC role delegation
allows multi-step delegation [13], i.e. friends of friends of
friends, but a socio-technical approach does not as a friend's
friend needn't be mine. Delegatees further delegating rights
also raises accountability issues, as will be seen. Conversely,
traditional access control models don't support multiplying
and dividing rights, which is socially common, e.g.
conferences usually have more than one chair.

Current access control models for OSN are based on
ownership and relationships [14-16], but do not specify the
dynamic reallocation of distributed rights found in social
networks [17], where everyone can give rights away. This
research revisits the problems of OSN access control to
suggest an access control model to manage not only
ownership and local roles but also meta-rights – the right to
give a right. There is currently no access control model for
OSN that supports any type of rights reallocation.

III. REQUIREMENT ANALYSIS

Technical architectures that don't support social norms

and expectations give a socio-technical gap, between what

society wants and what technology does [18]. This gap can't

be resolved by the usual social means of physical society, as

Internet technologies are fast, variable and global while

legislation is slow, fixed and local. Online, code is the law,

far more than the directives of society [19]. To bridge the

socio-technical gap we must integrate social requirements

into technical design, i.e. it needs socio-technical design.

The first requirement of any community is that only

people are held accountable, e.g. if a car crashes we blame

the driver not the car. It follows that the access control

system, being software, must allocate all rights over all

entities to actors all the time. If not, a rights access request

would require the system to decide yes or no, which is

socially unacceptable.

Secondly, social evolution requires rights reallocation as

socio-technical systems can evolve from an initial state of

one administrator with all rights to a community with

delegated and shared rights [20]. It allows role backups,

work collaboration and decentralization of authority [21].

The social requirement is also that rights reallocation be

done in a fair, consistent and understandable way. For

example, knowledge exchange systems are platforms for

people to share knowledge, e.g. academic conference or

journal systems. Social interaction (people relating to

people) is important in knowledge sharing, and the ability to

reallocate rights is the key to social interaction. If many

authors contribute to a paper, it makes sense to share rights

to view, edit and delete, but how? A many author paper

online can let the one submitting author alone edit it, let the

one submitting author delegate edit to another, let edits

proceed only if confirmed by all authors, or let any author

do any edit. Similarly, for conference chairs to delegate

rights and responsibilities to track chairs, the technology

must let them. Knowledge exchange systems must share

rights as well as knowledge.

If use rights are all rights except meta-rights, the rights

of an entity can be reallocated as follows:

1) Transfer. Allocate all rights.

2) Delegate. Allocate use rights only.

3) Multiply. Allocate rights severally to an actor set:

a) All rights

b) Use rights

c) Meta-rights

4) Divide. Allocate rights jointly to an actor set:

a) All rights

b) Use rights

c) Meta-rights

Transfer gives ownership away irreversibly. It

reallocates all rights, including meta-rights, so can't be

undone. Delegation gives use rights but not meta-rights. The

delegatee can use the object but the rights can be taken

back. In general, a right reallocation is revocable if the

initiating party keeps the meta-rights. One can also give

meta but keep use rights, as illustrated by feudal barons

pledging fealty to a king. A right can also be allocated to an

actor set. In multiply, it is copied to many actors, so they

can severally exercise the entire right. In divide, the right is

allocated to an actor set who must jointly activate it. Table 1

summarizes the possible reallocation end states for a giver

starting with all rights and a receiver with initially none (for

a given entity).
In society, to own an object is to be accountable for it,

e.g. to own a gun and not secure it is negligent. So the social
requirement is that to allocate a right to act on an existing
object makes one accountable for it, and so needs consent,
e.g. to add a paper coauthor requires their consent. If a right
holder grants a use right to another, the ACS needs to
confirm that they agree to take it, along with its obligations,
except for acts that don't change their target, like view and
enter, or that don't reference an existing object, like create.

TABLE 1. REALLOCATION END STATES FOR A GIVER AND A

RECEIVER WITH ALL RIGHTS

 Giver Receiver

 Meta rights Use rights Meta rights Use rights

1. Transfer  

2. Delegate  

3. Multiply

 a. All    

 b. Use   

 c. Meta   

4. Divide

 a. All ½ ½ ½ ½

 b. Use  ½ ½

 c. Meta ½  ½

IV. CORE MODEL

This research models the access control for rights

reallocations based on the core access control model for

OSN [5], thereby reusing several of the basic primitives.

Before the extended module for meta-rights reallocation is

presented, we briefly outline relevant aspects of the core

access control model. Table 2 defines the constructs of the

model.
TABLE 2. ABBREVIATIONS AND THEIR DEFINITIONS

 Definition

SH Stakeholder: A user who posts online resource objects, e.g.
papers, reviews, comments or votes.

NS Namespace: The set of objects a stakeholder creates.

VU Virtual user: A user, from the social circle of stakeholder,

seeking a NS resource access.

LR Local role: A VU group with defined access to NS resources.

OC Object class: An object group, based on security clearance,

whose access is mapped to LRs.

AC Attestation certificates: Permission objects encapsulated
various access rights and map LR to OC objects.

These components are used to define an access control

model independent of the policy. Each SH manages its own

policy by allocating VUs to LRs with predefine access to

OCs. No global administration is required, as SHs

administer their NS resources.

The VUs are not mapped to the resources rather the entry

point to a NS is the abstraction of local roles. All the VUs in

SH NS are assigned some LR and access is managed on the

basis of LR membership. Likewise, objects O in SH NS are

categorized in security labeled OC with respect to their

clearance level. Additionally, attestation certificates (AC)

are introduced to add another protection layer [22] and are

assigned to every LR. The access is granted on the

encapsulation of requested right in AC for the requested OC

label. The system architecture of the core access control

model is illustrated in Figure 1.

The access control model can be described as a state

transition system {δ, γ, σ, Λ} where δ is a set of states, γ is a

set of rights that include privileged requests considered by

the system, σ is the entailment relation that determines

whether a given right request is true or not in a given state,

and Λ is the set of state-transition rules.

The implementation computes a function σi: δi × γ →

{true, false}, where δi is the set of local states of domain i,

and γ is the set of specific access requests. In general, δ

comprises of five different states namely, Virtual users

(VU), Member (M), Non-Member (Nm), Allow (a) and Deny

(d). σ has four set of functions, including mapping of VU to

M or Nm, mapping of objects to OC, allocation of AC to M

and OC, and mapping of LR to OC to decide the outcome of

request ϒi. Λ comprises of the following access rules for

every namespace request:

• If a VUid is in NSi and maps to some LRj, the VU state
changes to Mi, else it becomes Nmi.

• Object belongs to an object class under some label
(default L1(τ)), i.e. O → OCτ , where, τ is the set of all
security labels used for confidentiality levels. These
labels are hierarchical and form a lattice under a partial
order > such that L1>L2 if and only if .

• If VU is in M state and requests some object O from OC,
and there is a mapping of LRi to OCi then the request ϒi

is granted, else it is denied.

• If VU is in Nm state and requests some object O, then
the request ϒi is always denied.

Given a namespace i in OSN, an access condition con
against NSi is a tuple (VU, LR, OC, AC), where

is the requestor in domain i,

is the object privacy clearance and
is the attestation certificate for LR. If VU =*, VU
corresponds to any user in OSN but is not active in
namespace i, whereas if AC=*, there is no mapping exist for
LRi to OCτ.

Figure 1. Core access control model system architecture

V. META-RIGHTS MODEL

Basic access control operations can be expressed using a

ternary function Grant-Right (A, E, M) which lets actor A

perform method M over entity E, for E outside the access

control system. So, the owner of text can grant Alice right to

view it by saying to the ACS:

Grant-Right (Alice, text, View)… (ii)

Meta-rights then define who can operate on rights entities

within the access control system. The general form is:

Meta-RightE = (Owner, AnyRightE, Allocate) … (iii)

This is the same form as (ii) but the entity acted on is now a

right, and allocate is any operation on a right, e.g. transfer,

delegate, multiply or divide (Table 1).

Generalizing equation (ii), replacing Alice with an actor

set and text with a namespace gives a role:

FriendNS = ({*}, NS, View) … (iv)

where {*} is an unspecified actor set, and NS a namespace

with objects in it like text. The friend role statement permits

its actor set to view any object in the namespace. Allocating

Alice to the friend role lets her view not only text but any

other entities in the namespace now or in the future. Yet it is

now an act upon an entity inside the ACS:

ChangeR (Alice, FriendNS, Add)… (iv)

ChangeR as an act upon a role requires meta-rights to define

who owns the friend role. A role is a variable right attached

to an entity, here a local namespace. In general, it is a triplet

of any actor set, any entity set and any method set. So the

friend role could let friends edit as well as view:

FriendNS = ({*}, NS, {View, Edit}) … (v)

Such authorizations are also modeled by formulae of the

form A says Ω, where Ω is any rights statement [23], e.g. a

rights assignment or security policy condition. The form A

says Ω can be used in any system as A and Ω are general,

not just restricted to the admin says Ω of a central system.

This form also requires meta-rights, to specify who can say

what, so this model would write (ii) above as:

Ownertext says Grant-Right (Alice, text, View)… (vii)

where Ownertext has the view meta-right, and (iii) as:

OwnerNS says FriendNS = ({*}, NS, View) … (viii)

Equation (iv), adding a friend, becomes:

OwnerFriend says ChangeR (Alice, FriendNS, Add) (ix)

or equivalently:

Meta-OwnerNS says ChangeR (Alice, FriendNS, Add)… (x)

The right can also be revoked:

Meta-OwnerNS says ChangeR (Alice, FriendNS, Subtract)…

(xi)

The above can be generalized to any role on any domain

namespace. The details of the allocate operations permitted

upon rights entities are now discussed and the system

architecture of the proposed model is presented in Figure 2.

A. Transfer

To transfer the ownership of an entity is to change the

actor property of all rights upon it. It transfers use and meta-

rights to another user [20], which always requires the

consent of the new owner. The rights are irrevocably given,

e.g. after selling a house the old owner has no rights to it.

This is represented by function

Meta-OwnerSpace says ChangeR (A, RightAll, Add)… (xii)

To maintain the consistency of the system state, the

transfer of an entity, as opposed to a right, may take several

steps. First, moving the object from one namespace to

another, second is the transfer of says method to the new

owner so the transfer of use rights to the object, and finally

the transfer of meta-rights, after which no more activity

upon it is possible.

The transfer model (δTransfer , γTransfer , σTransfer , ΛTransfer)

extends the core model by σTransfer and ΛTransfer , where

σTransfer comprises of two functions: (i) addition of use and

meta rights to the new owner, and (ii) removal of use and

meta-rights from the old owner, and ΛTransfer consists of the

following set of rules:

• The requestor VUj owning NSj is mapped to some LRi in

NSi which belongs to VUi using equation (i).

• The requested object O is classified into the same OCτ .

• The LRi has an AC with access to that OC.

• The transfer of object O to NSj .
• The addition of use rights as well as meta-rights to VUj.
• The removal of use and meta-rights from VUi .

B. Delegate

The owner of an object delegates the use rights over his

object to some other user, who can exercise the rights on the

owner’s behalf. Delegating a right changes the active actor

for use rights but not for entity meta-rights, so can be taken

back, To delegate edit rights, as a conference chair to a track

chair, means the conference chair cannot directly edit the

track, but can dismiss the track chair to take it over.

Socially, full accountability for a track increases effort, and

likewise a "free" community with delegated rights will

participate more. Delegating edit rights to A to a space is the

statement:

Meta-OwnerSpace says ChangeR (A, RightEdit, Add) … (xiv)

which requires delegatee consent. The delegatee cannot then

let a third actor edit because they don't own the meta-rights,

i.e. the right to give a right, e.g. renting an apartment gives

no right to sub-let. If they give up the edit right, it reverts

back to the meta-owner, by the principle that all rights must

be allocated. Similarly, lending a book to another doesn't

give them the right to on-lend it. The social principle that

delegatees can't on-delegate is being consistent to maintain

accountability, e.g. if one loans a book to a person who

loans it to another person, who loses it, who is accountable?

Apart from the core model components, the delegation

model further extends by the delegate relation γDelegate , the

set of states for delegation δDelegate , the delegation function

σDelegate and the set of state transition rules ΛDelegate . δDelegate

consists of two states, Delegator (Dlg) and Delegatee (Dge),

σDelegate extends by two functions: (i) addition of use rights

to Dge, and (ii) removal of use rights from the Dlg, while

the revocation of the delegation method remains with the

Dlg. ΛDelegate comprises of the following set of rules:

• The requestor VUj belongs to the LRi for the requested

OC in the NSi using equation (i).

• The requested object O is classified into the same OCτ.

• The LRi has an AC with access to that OCτ.

• The assignment of Dge role to VUj, and Dlg to VUi.

• The addition of use rights to the Dge, and their removal

from Dlg.
• Meta-rights remain with the Dlg.

C. Multiply

This reallocation multiplies the entire right completely,

so any party can act alone, as if they owned it exclusively,

e.g. a couple's bank account where both can withdraw all the

money. Entity operations like view are usually multiplied

rather than transferred. The meta-owner of an entity gives

view rights to others as well as keeps them, which in effect

copies the rights. Now the meta-owner and the beneficiaries

can all exercise that right. Multiplying use rights is

revocable but multiplying meta-rights is a dictator's dream,

as anyone can immediately allocate all rights to themselves

(Table 1). Multiplying view rights to a space to A is the

statement:

Meta-OwnerNS says ChangeR (A, RightView, Multiply)… (xvi)

This adds A to a viewing set, as in (ix).

Multiply can be modeled using the formula A ∨ B says

Ω to mean that principal A or B says Ω, where Ω can be any

arbitrary operation legal in the settings of access control

Figure 2. System architecture of meta-rights model

model instance. In multiply, Ω needs to be explicitly defined

for the object as all the actors can execute the multiplied

operation alone on their own behalf.

Apart from the core model components, the multiply

model extends δNultiply by one state, Secondary owner (SO)

under the multiply relation γMultiply . σMultiply extends by two

functions: (i) addition of use rights to SO, and (ii) addition

of meta rights to SO, while ΛMultiply comprises of the

following set of rules:

• The VUj belongs to the LRi for the requested OC in the

NSi using equation (i).

• The requested object O is classified into the same OCτ.

• The LRi has an AC with access to that OCτ.

• The assignment of SOi role to VUj.
• The multiplication of use and/or meta-rights to SOi.

D. Divide

Division of rights requires multiple actors to collaborate

to complete a task. A right divided among actors means all

must consent to exercise it, and no actor can act alone, e.g.

a couple who jointly own a house must both agree to sell it.

In rights division, any party can stop an act but all are

needed to activate it. Dividing use rights is revocable but

dividing all rights is not, as reverting would require joint

agreement. For example, dividing edit rights among two

authors would require them both to consent to any edit, as

word processing track-change functions currently try to do.

This can be modeled as:

Meta-OwnerDocument says ChangeR (A, RightEdit, Divide)…

(xviii)

After rights division, it requires a statement of the form

A ∧ B says Ω. This would require the consent of both A and

B to execute the function Ω. One can argue that democracy

is the division of community meta-rights among its citizens,

where the division is not absolute, i.e. a majority of over

50% agreement allows an action to proceed.

Along with the core model components, the division

model includes the divide relation γDivide , and extends δ Divide

by one state, Primary Owner (PO). σDivide also extends by

three functions including: (i) addition of use rights to PO,

(ii) addition of meta rights to PO and (iii) the restriction on

PO and Owner to use them jointly. ΛDivide comprises of the

following set of rules:

• The VUj belongs to the LRi for the requested OC in the

NSi using equation (i).

• The requested object O is classified into the same OCτ.

• The LRi has an AC with access to that OCτ.

• The assignment of POi role to VUj.
• The addition of use and/or meta-rights to the POi.
• Restricting POi and VUi to act jointly.

VI. CONCLUSION

This paper defines a mathematical framework for meta-

rights reallocation in access control for OSN based on socio-

technical design. An architecture for the model is also

provided to work with existing security structures. The aim

of using socio-technical design approach is to also satisfy

social needs to avoid social errors that give community

outrage. The framework is generic enough to model a large

variety of applications. The next step is to apply this meta-

access control model on various current scenarios of OSN to

generalize its semantics, and evaluate it against fairness and

efficiency.

Socio-technical design is the future of information

security, as online communities can't survive without

participation. Access control today is more about access

than control, i.e. about letting people in rather than keeping

them out. This model avoids social errors at source to

increase the chance of online social success. The evolution

of access control towards the allocation of rights by meta-

rights will open up new research dimensions.

ACKNOWLEDGMENT

This work has been sponsored by National Science Foundation
(NSF), USA, under award number 0968445. “OKES: An open

knowledge exchange system to promote meta-disciplinary
collaboration based on socio-technical principles”.

REFERENCES

[1] F. Fu, L. Liu, and L. Wang, “Empirical analysis of online
social networks in the age of web 2.0”. Physica A, Vol. 387,
pp.675-684, 2007.

[2] B. Whitworth, “Socio-technical Systems”. In C. Ghaoui (Ed.),
Encyclopedia of Human Computer Interaction (pp. 533-541).
Hershey: Idea Group, 2006.

[3] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu and
B. M. Thuraisingham, “A semantic web based framework for
social network access control”. Proc. ACM Symposium on
Access Control Models and Technologies, SACMAT 2009.

[4] ABC News, 17th May 2010.
http://www.abc.net.au/news/2010-05-17/teens-murder-sparks-
facebook-privacy-plea/829850.

[5] A. Ahmad, and B. Whitworth, “Distributed Access Control
for Social Networks”, Proc. International conference of
information assurance and security (IAS’11)2011.

[6] A. Ahmad, and B. Whitworth, “Access Control Taxonomy for
Social Networks”, Proc. International conference of
information assurance and security (IAS’11) 2011.

[7] B. Whitworth, A. de Moor, and T. Liu, “Towards a Theory of
Online Social Rights”, in R. Meersman, Z. Tari, P. Herrero et
al. (Eds.): OTM Workshops LNCS 4277, pp. 247 – 256,
Springer-Verlag Berlin Heidelberg, 2006.

[8] B. Whitworth, and A. deMoor, “Legitimate by design:
Towards trusted virtual community environments”. Behaviour
& Information Technology Journal, 22:1, p31-51, 2003.

[9] N. V. Patel., “Theory of Deferred Action: Exploring the
Boundaries of and Between Socio-Technical Systems
Design”, Design Principles & Practices 3(4), 285-296, 2009.

[10] V. Varadharajan, P. Allen and S. Black, “An Analysis of the
Proxy Problem in Distributed systems”. IEEE Symposium on
Research in Security and Privacy. Oakland, CA 1991.

[11] M. Gasser and E. McDermott, “An Architecture for practical
Delegation in a Distributed System”. IEEE Symposium on
Research in Security and Privacy. Oakland, CA, 1990.

[12] E. Barka, and R. S. Sandhu, "Framework for role-based
delegation models", 16th Annual Computer Security
Applications Conference (ACSAC 2000) New Orleans, La.
IEEE Computer Society Press, Los Alamitos, Calif., 168–177.

[13] L. Zhang, G. Ahn, and B. Chu, “A Rule-based framework for
role based delegation”, Proc. 6th ACM Symposium on Access
Control Models and Technologies, Chantilly, VA, 2001.

[14] B. Ali, W. Villegas, and M. Maheswaran, “A trust based
approach for protecting user data in social networks”. Proc.
Conference of the Center for Advanced Studies on
Collaborative research (CASCON’07), pages 288–293, 2007.

[15] B. Carminati, E. Ferrari, and A. Perego, “Rule-based access
control for social networks”, In On the Move to Meaningful
Internet Systems 2006: OTM Workshops 2006.

[16] A. Tapiador, D. Carrera, and J. Salvachúa, “Tie-RBAC: an
application of RBAC to Social Networks”. Web 2.0 Security
and Privacy , Oakland, California, 2011.

[17] A. Simpson, “On the need for user-defined fine-grained
access control policies for social networking applications”, In
SOSOC '08: Proc. of the Work-shop on Security in
Opportunistic and social networks, New York, USA, 2008.

[18] C. Dwyer, “Digital Relationships in the ‘MySpace’
Generation: Results From a Qualitative Study” Proc. 40th
Hawaii International Conference on System Sciences, 2007.

[19] J. Mueller, B. Renzl, and A. Kaar, “'It's not my community'?
insights from social identity theory explaining community-

failure”. International Journal of Learning and Change, 3(1),
23-37, 2008.

[20] K. Gaaloul, A. Schaad, and U. Flegel, “A secure task
delegation model for workflows”, Proc. Second International
Conference on Emerging Security Information, Systems and
Technologies, 2008.

[21] D. G. Park, and Y. R. Lee, “A Flexible Role-Based
Delegation Model Using Characteristics of Permissions” 16th
International conference on databases and expert system, (pp.
310-323), 2005.

[22] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K.
Jackson, and A. Essiari, “Certificate-based access control for
widely distributed resources”, Proc. 8th Usenix Security
Symposium, pages 215–228, 1999.

[23] V. Genovese, L. Giordano, V. Gliozzi, G. L. Pozzato, “A
constructive conditional logic for access control: a
preliminary report”. Proc. 19th European Conference on
artificial intelligence, ECAI'2010. pp.1073~1074., 2010.

